https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance Cognition and Neuroergonomics Collaborative Technology Alliance - Revision history 2024-10-28T17:17:14Z Revision history for this page on the wiki MediaWiki 1.43.0-wmf.28 https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=1186608308&oldid=prev Citation bot: Add: doi-access, s2cid. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 409/2500 2023-11-24T09:36:47Z <p>Add: doi-access, s2cid. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Corvus florensis | #UCB_webform 409/2500</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:36, 24 November 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 29:</td> <td colspan="2" class="diff-lineno">Line 29:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | pmc = 3231409 | doi = 10.3390/s110605819 | bibcode = 2011Senso..11.5819L | doi-access = free }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | pmc = 3231409 | doi = 10.3390/s110605819 | bibcode = 2011Senso..11.5819L | doi-access = free }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of one's learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite journal|title=Learning-Induced Autonomy of Sensorimotor Systems|arxiv = 1403.6034|last1 = Bassett|first1 = Danielle S.|last2 = Yang|first2 = Muzhi|last3 = Wymbs|first3 = Nicholas F.|last4 = Grafton|first4 = Scott T.|journal = Nature Neuroscience|year = 2014|volume = 18|issue = 5|pages = 744–51|doi = 10.1038/nn.3993|pmid = 25849989|pmc = 6368853}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of one's learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite journal|title=Learning-Induced Autonomy of Sensorimotor Systems|arxiv = 1403.6034|last1 = Bassett|first1 = Danielle S.|last2 = Yang|first2 = Muzhi|last3 = Wymbs|first3 = Nicholas F.|last4 = Grafton|first4 = Scott T.|journal = Nature Neuroscience|year = 2014|volume = 18|issue = 5|pages = 744–51|doi = 10.1038/nn.3993|pmid = 25849989|pmc = 6368853}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191<ins style="font-weight: bold; text-decoration: none;"> | s2cid = 16682661</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35<ins style="font-weight: bold; text-decoration: none;"> | doi-access = free</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Results concerning neural network control and brain structure reported the following. Densely connected areas, especially in the [[Default mode network|default mode system]], have a large influence on the transition between cognitive states. Meanwhile, weakly connected areas, particularly in the [[Executive functions|executive function]] system, assist in transitioning to difficult-to-reach cognitive states. The integration of various cognitive systems is accomplished by areas of the brain at the boundaries of [[neural network]]s, particularly the attentive control systems.&lt;ref&gt;{{cite journal | vauthors = Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS | title = Controllability of structural brain networks | language = En | journal = Nature Communications | volume = 6 | issue = 1 | pages = 8414 | date = October 2015 | pmid = 26423222 | pmc = 4600713 | doi = 10.1038/ncomms9414 | arxiv = 1406.5197 | bibcode = 2015NatCo...6.8414G }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Results concerning neural network control and brain structure reported the following. Densely connected areas, especially in the [[Default mode network|default mode system]], have a large influence on the transition between cognitive states. Meanwhile, weakly connected areas, particularly in the [[Executive functions|executive function]] system, assist in transitioning to difficult-to-reach cognitive states. The integration of various cognitive systems is accomplished by areas of the brain at the boundaries of [[neural network]]s, particularly the attentive control systems.&lt;ref&gt;{{cite journal | vauthors = Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS | title = Controllability of structural brain networks | language = En | journal = Nature Communications | volume = 6 | issue = 1 | pages = 8414 | date = October 2015 | pmid = 26423222 | pmc = 4600713 | doi = 10.1038/ncomms9414 | arxiv = 1406.5197 | bibcode = 2015NatCo...6.8414G }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A filter bank [[Canonical correlation|CCA]]-based frequency detection analysis was used to improve the detection of [[Steady state visually evoked potential|SSVEPs]]. This CCA assisted in improving the speed of SSVEP-based BCI technology.&lt;ref&gt;{{Cite journal|title=Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface|journal=Journal of Neural Engineering|volume=12|issue=4|pages=046008|doi=10.1088/1741-2560/12/4/046008|pmid=26035476|year=2015|last1=Chen|first1=Xiaogang|last2=Wang|first2=Yijun|last3=Gao|first3=Shangkai|last4=Jung|first4=Tzyy-Ping|last5=Gao|first5=Xiaorong|bibcode=2015JNEng..12d6008C}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A filter bank [[Canonical correlation|CCA]]-based frequency detection analysis was used to improve the detection of [[Steady state visually evoked potential|SSVEPs]]. This CCA assisted in improving the speed of SSVEP-based BCI technology.&lt;ref&gt;{{Cite journal|title=Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface|journal=Journal of Neural Engineering|volume=12|issue=4|pages=046008|doi=10.1088/1741-2560/12/4/046008|pmid=26035476|year=2015|last1=Chen|first1=Xiaogang|last2=Wang|first2=Yijun|last3=Gao|first3=Shangkai|last4=Jung|first4=Tzyy-Ping|last5=Gao|first5=Xiaorong|bibcode=2015JNEng..12d6008C<ins style="font-weight: bold; text-decoration: none;">|s2cid=44588896 </ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=1184233182&oldid=prev Oloddin at 04:03, 9 November 2023 2023-11-09T04:03:57Z <p></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:03, 9 November 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|US Army research program}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|US Army research program}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Multiple issues|</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{Orphan|date=September 2023}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=September 2018}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=September 2018}}</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance''' was a research program initiated, sponsored and partly performed by the [[United States Army Research Laboratory|U.S. Army Research Laboratory]]. The objective of the program was to “conduct research and development leading to the demonstration of fundamental translational principles of the application of neuroscience-based research and theory to complex operational settings. These principles will guide the development of technologies that work in harmony with the capabilities and limitations of the human nervous system.”&lt;ref name=":0"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=393|title=Cognition &amp; Neuroergonomics {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance''' was a research program initiated, sponsored and partly performed by the [[United States Army Research Laboratory|U.S. Army Research Laboratory]]. The objective of the program was to “conduct research and development leading to the demonstration of fundamental translational principles of the application of neuroscience-based research and theory to complex operational settings. These principles will guide the development of technologies that work in harmony with the capabilities and limitations of the human nervous system.”&lt;ref name=":0"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=393|title=Cognition &amp; Neuroergonomics {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt;</div></td> </tr> </table> Oloddin https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=1173761381&oldid=prev Ost316: WP:AWB WP:CHECKWIKI 16/90/91 cleanup, et. al., added orphan tag, typo(s) fixed: ’s → 's (5) 2023-09-04T07:26:56Z <p><a href="/wiki/Wikipedia:AWB" class="mw-redirect" title="Wikipedia:AWB">WP:AWB</a> <a href="/wiki/Wikipedia:CHECKWIKI" class="mw-redirect" title="Wikipedia:CHECKWIKI">WP:CHECKWIKI</a> 16/90/91 cleanup, et. al., added <a href="/wiki/CAT:O" class="mw-redirect" title="CAT:O">orphan</a> tag, <a href="/wiki/Wikipedia:AWB/T" class="mw-redirect" title="Wikipedia:AWB/T">typo(s) fixed</a>: ’s → &#039;s (5)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:26, 4 September 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 1:</td> <td colspan="2" class="diff-lineno">Line 1:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|US Army research program}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|US Army research program}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Multiple issues|</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{Orphan|date=September 2023}}</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=September 2018}}</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{COI|date=September 2018}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance''' was a research program initiated, sponsored and partly performed by the [[United States Army Research Laboratory|U.S. Army Research Laboratory]]. The objective of the program was to “conduct research and development leading to the demonstration of fundamental translational principles of the application of neuroscience-based research and theory to complex operational settings. These principles will guide the development of technologies that work in harmony with the capabilities and limitations of the human nervous system.”&lt;ref name=":0"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=393|title=Cognition &amp; Neuroergonomics {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance''' was a research program initiated, sponsored and partly performed by the [[United States Army Research Laboratory|U.S. Army Research Laboratory]]. The objective of the program was to “conduct research and development leading to the demonstration of fundamental translational principles of the application of neuroscience-based research and theory to complex operational settings. These principles will guide the development of technologies that work in harmony with the capabilities and limitations of the human nervous system.”&lt;ref name=":0"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=393|title=Cognition &amp; Neuroergonomics {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Collaboration Technology and Research Alliances describe cooperative research and technology efforts between private industry, academia, and Army laboratories and centers.&lt;ref name=":1"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=93|title=Collaborative Alliances {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt; This collaboration allows Army researchers and engineers to join academic research developments and the <del style="font-weight: bold; text-decoration: none;">industry’s</del> production abilities and translate them into improving Army capabilities.&lt;ref name=":2"&gt;{{Cite web|url=https://www.cancta.net/organization.shtml|title=CaN CTA|website=www.cancta.net|access-date=2018-09-04}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Collaboration Technology and Research Alliances describe cooperative research and technology efforts between private industry, academia, and Army laboratories and centers.&lt;ref name=":1"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=93|title=Collaborative Alliances {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt; This collaboration allows Army researchers and engineers to join academic research developments and the <ins style="font-weight: bold; text-decoration: none;">industry's</ins> production abilities and translate them into improving Army capabilities.&lt;ref name=":2"&gt;{{Cite web|url=https://www.cancta.net/organization.shtml|title=CaN CTA|website=www.cancta.net|access-date=2018-09-04}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 18:</td> <td colspan="2" class="diff-lineno">Line 22:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Advanced Computational Approaches (ACA) was to develop methods to decode, monitor, and infer state from both neural and non-neural information. As research progressed, it focused on data from [[Integrated circuit#SSI, MSI, LSI|Large Scale Integrative]] experiments as well experimental data sets from the other two thrusts of the CaN CTA.</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Advanced Computational Approaches (ACA) was to develop methods to decode, monitor, and infer state from both neural and non-neural information. As research progressed, it focused on data from [[Integrated circuit#SSI, MSI, LSI|Large Scale Integrative]] experiments as well experimental data sets from the other two thrusts of the CaN CTA.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Real World Neuroimaging (RWN) was to assist in studying the brain outside of the laboratory setting. Citation This branch has prioritized engineering and experimental studies with wireless [[Electroencephalography#Dry EEG electrodes|dry electrodes]] EEG system. This emphasis was made to improve dry EEG systems’ reliability and performance, determine standards of validity for them, and better understand their applications in real world neuroimaging. Another one of <del style="font-weight: bold; text-decoration: none;">RWN’s</del> research concentrations was studying how stress and fatigue affect behavior in the real world.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Real World Neuroimaging (RWN) was to assist in studying the brain outside of the laboratory setting. Citation This branch has prioritized engineering and experimental studies with wireless [[Electroencephalography#Dry EEG electrodes|dry electrodes]] EEG system. This emphasis was made to improve dry EEG systems’ reliability and performance, determine standards of validity for them, and better understand their applications in real world neuroimaging. Another one of <ins style="font-weight: bold; text-decoration: none;">RWN's</ins> research concentrations was studying how stress and fatigue affect behavior in the real world.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Brain Computer Interactions (BCI) was established to improve [[Brain–computer interface|BCI technologies]] and improve human-robot communication. The poor robustness witnessed in many BCI technologies has been attributed to the ability of neural responses to change over time and that individuals may have different neural outputs to the same stimuli. BCI concentrated on using machine learning and developing an algorithm that would maintain a strong performance BCI <del style="font-weight: bold; text-decoration: none;">technology’s</del> despite changes in an <del style="font-weight: bold; text-decoration: none;">individual’s</del> mental state. Other example areas of interest were combining [[Intelligent tutoring system|intelligent tutoring]] with BCI technologies, and improving human-robot communication via [[Rapid serial visual presentation|rapid series visual presentations]] with EEG.</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Brain Computer Interactions (BCI) was established to improve [[Brain–computer interface|BCI technologies]] and improve human-robot communication. The poor robustness witnessed in many BCI technologies has been attributed to the ability of neural responses to change over time and that individuals may have different neural outputs to the same stimuli. BCI concentrated on using machine learning and developing an algorithm that would maintain a strong performance BCI <ins style="font-weight: bold; text-decoration: none;">technology's</ins> despite changes in an <ins style="font-weight: bold; text-decoration: none;">individual's</ins> mental state. Other example areas of interest were combining [[Intelligent tutoring system|intelligent tutoring]] with BCI technologies, and improving human-robot communication via [[Rapid serial visual presentation|rapid series visual presentations]] with EEG.</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Results ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Results ==</div></td> </tr> <tr> <td colspan="2" class="diff-lineno">Line 27:</td> <td colspan="2" class="diff-lineno">Line 31:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The identification of a multifocal theta band indicating a loss of balance during a balance beam walking exercise. The knowledge of electrocortical indications for balance loss could allow for a better clinical assessment. Preventative measures could be made for those predisposed to falls who exhibit this neural behavior.&lt;ref&gt;{{Cite journal|title=Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response|journal=Journal of Neurophysiology|volume=110|issue=9|pages=2050–2060|doi=10.1152/jn.00744.2012|pmid=23926037|pmc=3841925|year=2013|last1=Sipp|first1=Amy R.|last2=Gwin|first2=Joseph T.|last3=Makeig|first3=Scott|last4=Ferris|first4=Daniel P.}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The identification of a multifocal theta band indicating a loss of balance during a balance beam walking exercise. The knowledge of electrocortical indications for balance loss could allow for a better clinical assessment. Preventative measures could be made for those predisposed to falls who exhibit this neural behavior.&lt;ref&gt;{{Cite journal|title=Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response|journal=Journal of Neurophysiology|volume=110|issue=9|pages=2050–2060|doi=10.1152/jn.00744.2012|pmid=23926037|pmc=3841925|year=2013|last1=Sipp|first1=Amy R.|last2=Gwin|first2=Joseph T.|last3=Makeig|first3=Scott|last4=Ferris|first4=Daniel P.}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | pmc = 3231409 | doi = 10.3390/s110605819 | bibcode = 2011Senso..11.5819L | doi-access = free }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | pmc = 3231409 | doi = 10.3390/s110605819 | bibcode = 2011Senso..11.5819L | doi-access = free }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of <del style="font-weight: bold; text-decoration: none;">one’s</del> learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite journal|title=Learning-Induced Autonomy of Sensorimotor Systems|arxiv = 1403.6034|last1 = Bassett|first1 = Danielle S.|last2 = Yang|first2 = Muzhi|last3 = Wymbs|first3 = Nicholas F.|last4 = Grafton|first4 = Scott T.|journal = Nature Neuroscience|year = 2014|volume = 18|issue = 5|pages = 744–51|doi = 10.1038/nn.3993|pmid = 25849989|pmc = 6368853}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of <ins style="font-weight: bold; text-decoration: none;">one's</ins> learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite journal|title=Learning-Induced Autonomy of Sensorimotor Systems|arxiv = 1403.6034|last1 = Bassett|first1 = Danielle S.|last2 = Yang|first2 = Muzhi|last3 = Wymbs|first3 = Nicholas F.|last4 = Grafton|first4 = Scott T.|journal = Nature Neuroscience|year = 2014|volume = 18|issue = 5|pages = 744–51|doi = 10.1038/nn.3993|pmid = 25849989|pmc = 6368853}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> </tr> </table> Ost316 https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=1166201424&oldid=prev Pppery: Tidy up 2023-07-20T01:04:42Z <p>Tidy up</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 01:04, 20 July 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 13:</td> <td colspan="2" class="diff-lineno">Line 13:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The CaN identified limitations in the field of cognitive neuroscience that needed attention. The limited conditions in a laboratory setting could not integrate the spans of physical and socio-cultural factors found in real world environments. Systems that monitor brain and body dynamics that are portable, robust, minimally invasive, and affordable have been underdeveloped. There were not enough software or mathematical models devoted to reporting variations in environment, behavior, and function in real time. The program sought to remedy these problems and leverage the solutions for the benefit of the soldier. CaN established the need for a new experimental environment where multisensory analysis can occur and wearable sensors that monitor brain and body dynamics. Additionally, it called for data sets and development of methods to allow for more in-depth characterization of behavior and variation in cognitive ability, performance, and personality.&lt;ref name=":2" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The CaN identified limitations in the field of cognitive neuroscience that needed attention. The limited conditions in a laboratory setting could not integrate the spans of physical and socio-cultural factors found in real world environments. Systems that monitor brain and body dynamics that are portable, robust, minimally invasive, and affordable have been underdeveloped. There were not enough software or mathematical models devoted to reporting variations in environment, behavior, and function in real time. The program sought to remedy these problems and leverage the solutions for the benefit of the soldier. CaN established the need for a new experimental environment where multisensory analysis can occur and wearable sensors that monitor brain and body dynamics. Additionally, it called for data sets and development of methods to allow for more in-depth characterization of behavior and variation in cognitive ability, performance, and personality.&lt;ref name=":2" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Research <del style="font-weight: bold; text-decoration: none;">Thrusts</del> ==</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Research <ins style="font-weight: bold; text-decoration: none;">thrusts</ins> ==</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Three primary research focuses were identified and pursued within the CaN program:&lt;ref name=":0" /&gt;&lt;ref name=":2" /&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Three primary research focuses were identified and pursued within the CaN program:&lt;ref name=":0" /&gt;&lt;ref name=":2" /&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_8_0_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_3_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">* Advanced Computational Approaches (</ins>ACA<ins style="font-weight: bold; text-decoration: none;">)</ins> was to develop methods to decode, monitor, and infer state from both neural and non-neural information. As research progressed, it focused on data from [[Integrated circuit#SSI, MSI, LSI|Large Scale Integrative]] experiments as well experimental data sets from the other two thrusts of the CaN CTA.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Advanced Computational Approaches (ACA)'''</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_9_3_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_5_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">* Real World Neuroimaging (</ins>RWN<ins style="font-weight: bold; text-decoration: none;">)</ins> was to assist in studying the brain outside of the laboratory setting. Citation This branch has prioritized engineering and experimental studies with wireless [[Electroencephalography#Dry EEG electrodes|dry electrodes]] EEG system. This emphasis was made to improve dry EEG systems’ reliability and performance, determine standards of validity for them, and better understand their applications in real world neuroimaging. Another one of RWN’s research concentrations was studying how stress and fatigue affect behavior in the real world.</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td colspan="2" class="diff-empty diff-side-deleted"></td> <td class="diff-marker"><a class="mw-diff-movedpara-right" title="Paragraph was moved. Click to jump to old location." href="#movedpara_9_7_lhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_7_0_rhs"></a><ins style="font-weight: bold; text-decoration: none;">* Brain Computer Interactions (</ins>BCI<ins style="font-weight: bold; text-decoration: none;">)</ins> was established to improve [[Brain–computer interface|BCI technologies]] and improve human-robot communication. The poor robustness witnessed in many BCI technologies has been attributed to the ability of neural responses to change over time and that individuals may have different neural outputs to the same stimuli. BCI concentrated on using machine learning and developing an algorithm that would maintain a strong performance BCI technology’s despite changes in an individual’s mental state. Other example areas of interest were combining [[Intelligent tutoring system|intelligent tutoring]] with BCI technologies, and improving human-robot communication via [[Rapid serial visual presentation|rapid series visual presentations]] with EEG.</div></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_3_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_8_0_lhs"></a>ACA was to develop methods to decode, monitor, and infer state from both neural and non-neural information. As research progressed, it focused on data from [[Integrated circuit#SSI, MSI, LSI|Large Scale Integrative]] experiments as well experimental data sets from the other two thrusts of the CaN CTA.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Real World Neuroimaging (RWN)'''</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_5_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_9_3_lhs"></a>RWN was to assist in studying the brain outside of the laboratory setting. Citation This branch has prioritized engineering and experimental studies with wireless [[Electroencephalography#Dry EEG electrodes|dry electrodes]] EEG system. This emphasis was made to improve dry EEG systems’ reliability and performance, determine standards of validity for them, and better understand their applications in real world neuroimaging. Another one of RWN’s research concentrations was studying how stress and fatigue affect behavior in the real world.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Brain Computer Interactions (BCI)'''</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"><a class="mw-diff-movedpara-left" title="Paragraph was moved. Click to jump to new location." href="#movedpara_7_0_rhs">&#x26AB;</a></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div><a name="movedpara_9_7_lhs"></a>BCI was established to improve [[Brain–computer interface|BCI technologies]] and improve human-robot communication. The poor robustness witnessed in many BCI technologies has been attributed to the ability of neural responses to change over time and that individuals may have different neural outputs to the same stimuli. BCI concentrated on using machine learning and developing an algorithm that would maintain a strong performance BCI technology’s despite changes in an individual’s mental state. Other example areas of interest were combining [[Intelligent tutoring system|intelligent tutoring]] with BCI technologies, and improving human-robot communication via [[Rapid serial visual presentation|rapid series visual presentations]] with EEG.</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Participants ==</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>CaN was made possible by the collaboration of the following groups with the U.S. Army Research Laboratory:</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* DCS Corp (Industrial Lead, Integration Principal Member)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* University of California San Diego</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* National Chiao Tung University (Taiwan)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* University of Michigan</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* University of Texas San Antonio</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Carnegie Mellon University</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Columbia University</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* University of Pennsylvania</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Johns Hopkins University</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* University of Maryland Baltimore County</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Pompeu Fabra University (Spain)</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Qusp</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Data Nova</div></td> <td colspan="2" class="diff-empty diff-side-added"></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Results ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Results ==</div></td> </tr> </table> Pppery https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=1161650088&oldid=prev Pppery: Pppery moved page Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance to Cognition and Neuroergonomics Collaborative Technology Alliance: Avoid Name (acronym) 2023-06-24T03:28:49Z <p>Pppery moved page <a href="/wiki/Cognition_and_Neuroergonomics_(CaN)_Collaborative_Technology_Alliance" class="mw-redirect" title="Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance">Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance</a> to <a href="/wiki/Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance" title="Cognition and Neuroergonomics Collaborative Technology Alliance">Cognition and Neuroergonomics Collaborative Technology Alliance</a>: Avoid Name (acronym)</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <tr class="diff-title" lang="en"> <td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="1" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 03:28, 24 June 2023</td> </tr><tr><td colspan="2" class="diff-notice" lang="en"><div class="mw-diff-empty">(No difference)</div> </td></tr></table> Pppery https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=1157543618&oldid=prev Surya923: research developments and the industry’s production 2023-05-29T09:40:29Z <p>research developments and the industry’s production</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:40, 29 May 2023</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 3:</td> <td colspan="2" class="diff-lineno">Line 3:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance''' was a research program initiated, sponsored and partly performed by the [[United States Army Research Laboratory|U.S. Army Research Laboratory]]. The objective of the program was to “conduct research and development leading to the demonstration of fundamental translational principles of the application of neuroscience-based research and theory to complex operational settings. These principles will guide the development of technologies that work in harmony with the capabilities and limitations of the human nervous system.”&lt;ref name=":0"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=393|title=Cognition &amp; Neuroergonomics {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The '''Cognition and Neuroergonomics (CaN) Collaborative Technology Alliance''' was a research program initiated, sponsored and partly performed by the [[United States Army Research Laboratory|U.S. Army Research Laboratory]]. The objective of the program was to “conduct research and development leading to the demonstration of fundamental translational principles of the application of neuroscience-based research and theory to complex operational settings. These principles will guide the development of technologies that work in harmony with the capabilities and limitations of the human nervous system.”&lt;ref name=":0"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=393|title=Cognition &amp; Neuroergonomics {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Collaboration Technology and Research Alliances describe cooperative research and technology efforts between private industry, academia, and Army laboratories and centers.&lt;ref name=":1"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=93|title=Collaborative Alliances {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt; This collaboration allows Army researchers and engineers to join academic research developments and industry’s production abilities and translate them into improving Army capabilities.&lt;ref name=":2"&gt;{{Cite web|url=https://www.cancta.net/organization.shtml|title=CaN CTA|website=www.cancta.net|access-date=2018-09-04}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Collaboration Technology and Research Alliances describe cooperative research and technology efforts between private industry, academia, and Army laboratories and centers.&lt;ref name=":1"&gt;{{Cite web|url=https://www.arl.army.mil/www/default.cfm?page=93|title=Collaborative Alliances {{!}} U.S. Army Research Laboratory|website=www.arl.army.mil|language=en|access-date=2018-09-04}}&lt;/ref&gt; This collaboration allows Army researchers and engineers to join academic research developments and<ins style="font-weight: bold; text-decoration: none;"> the</ins> industry’s production abilities and translate them into improving Army capabilities.&lt;ref name=":2"&gt;{{Cite web|url=https://www.cancta.net/organization.shtml|title=CaN CTA|website=www.cancta.net|access-date=2018-09-04}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== History ==</div></td> </tr> </table> Surya923 https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=1048000156&oldid=prev Citation bot: Add: doi-access, bibcode. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 804/1012 2021-10-03T18:34:16Z <p>Add: doi-access, bibcode. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 804/1012</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:34, 3 October 2021</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 52:</td> <td colspan="2" class="diff-lineno">Line 52:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The identification of a multifocal theta band indicating a loss of balance during a balance beam walking exercise. The knowledge of electrocortical indications for balance loss could allow for a better clinical assessment. Preventative measures could be made for those predisposed to falls who exhibit this neural behavior.&lt;ref&gt;{{Cite journal|title=Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response|journal=Journal of Neurophysiology|volume=110|issue=9|pages=2050–2060|doi=10.1152/jn.00744.2012|pmid=23926037|pmc=3841925|year=2013|last1=Sipp|first1=Amy R.|last2=Gwin|first2=Joseph T.|last3=Makeig|first3=Scott|last4=Ferris|first4=Daniel P.}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The identification of a multifocal theta band indicating a loss of balance during a balance beam walking exercise. The knowledge of electrocortical indications for balance loss could allow for a better clinical assessment. Preventative measures could be made for those predisposed to falls who exhibit this neural behavior.&lt;ref&gt;{{Cite journal|title=Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response|journal=Journal of Neurophysiology|volume=110|issue=9|pages=2050–2060|doi=10.1152/jn.00744.2012|pmid=23926037|pmc=3841925|year=2013|last1=Sipp|first1=Amy R.|last2=Gwin|first2=Joseph T.|last3=Makeig|first3=Scott|last4=Ferris|first4=Daniel P.}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | pmc = 3231409 | doi = 10.3390/s110605819 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | pmc = 3231409 | doi = 10.3390/s110605819<ins style="font-weight: bold; text-decoration: none;"> | bibcode = 2011Senso..11.5819L | doi-access = free</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of one’s learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite journal|title=Learning-Induced Autonomy of Sensorimotor Systems|arxiv = 1403.6034|last1 = Bassett|first1 = Danielle S.|last2 = Yang|first2 = Muzhi|last3 = Wymbs|first3 = Nicholas F.|last4 = Grafton|first4 = Scott T.|journal = Nature Neuroscience|year = 2014|volume = 18|issue = 5|pages = 744–51|doi = 10.1038/nn.3993|pmid = 25849989|pmc = 6368853}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of one’s learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite journal|title=Learning-Induced Autonomy of Sensorimotor Systems|arxiv = 1403.6034|last1 = Bassett|first1 = Danielle S.|last2 = Yang|first2 = Muzhi|last3 = Wymbs|first3 = Nicholas F.|last4 = Grafton|first4 = Scott T.|journal = Nature Neuroscience|year = 2014|volume = 18|issue = 5|pages = 744–51|doi = 10.1038/nn.3993|pmid = 25849989|pmc = 6368853}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=961067920&oldid=prev Citation bot: Alter: template type. Add: pmc, pmid, doi, pages, issue, volume, journal, arxiv. Removed parameters. Formatted dashes. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Activated by SemperIocundus | via #UCB_webform 2020-06-06T12:26:09Z <p>Alter: template type. Add: pmc, pmid, doi, pages, issue, volume, journal, arxiv. Removed parameters. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. Some additions/deletions were actually parameter name changes. | You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>. | Activated by SemperIocundus | via #UCB_webform</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:26, 6 June 2020</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 53:</td> <td colspan="2" class="diff-lineno">Line 53:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The identification of a multifocal theta band indicating a loss of balance during a balance beam walking exercise. The knowledge of electrocortical indications for balance loss could allow for a better clinical assessment. Preventative measures could be made for those predisposed to falls who exhibit this neural behavior.&lt;ref&gt;{{Cite journal|title=Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response|journal=Journal of Neurophysiology|volume=110|issue=9|pages=2050–2060|doi=10.1152/jn.00744.2012|pmid=23926037|pmc=3841925|year=2013|last1=Sipp|first1=Amy R.|last2=Gwin|first2=Joseph T.|last3=Makeig|first3=Scott|last4=Ferris|first4=Daniel P.}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* The identification of a multifocal theta band indicating a loss of balance during a balance beam walking exercise. The knowledge of electrocortical indications for balance loss could allow for a better clinical assessment. Preventative measures could be made for those predisposed to falls who exhibit this neural behavior.&lt;ref&gt;{{Cite journal|title=Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response|journal=Journal of Neurophysiology|volume=110|issue=9|pages=2050–2060|doi=10.1152/jn.00744.2012|pmid=23926037|pmc=3841925|year=2013|last1=Sipp|first1=Amy R.|last2=Gwin|first2=Joseph T.|last3=Makeig|first3=Scott|last4=Ferris|first4=Daniel P.}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | pmc = 3231409 | doi = 10.3390/s110605819 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | pmc = 3231409 | doi = 10.3390/s110605819 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of one’s learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">arXiv</del>|title=Learning-Induced Autonomy of Sensorimotor Systems|<del style="font-weight: bold; text-decoration: none;">eprint</del> = 1403.6034|last1 = Bassett|first1 = Danielle S.|last2 = Yang|first2 = Muzhi|last3 = Wymbs|first3 = Nicholas F.|last4 = Grafton|first4 = Scott T.|<del style="font-weight: bold; text-decoration: none;">class</del> = <del style="font-weight: bold; text-decoration: none;">q-bio.NC</del>|year = 2014}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of one’s learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">journal</ins>|title=Learning-Induced Autonomy of Sensorimotor Systems|<ins style="font-weight: bold; text-decoration: none;">arxiv</ins> = 1403.6034|last1 = Bassett|first1 = Danielle S.|last2 = Yang|first2 = Muzhi|last3 = Wymbs|first3 = Nicholas F.|last4 = Grafton|first4 = Scott T.|<ins style="font-weight: bold; text-decoration: none;">journal</ins> = <ins style="font-weight: bold; text-decoration: none;">Nature Neuroscience</ins>|year = 2014<ins style="font-weight: bold; text-decoration: none;">|volume = 18|issue = 5|pages = 744–51|doi = 10.1038/nn.3993|pmid = 25849989|pmc = 6368853</ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=908345050&oldid=prev Citation bot: Alter: template type. Add: bibcode, class, eprint, year, pmc, pmid, doi, pages, issue, volume, journal, author pars. 1-5. Removed URL that duplicated unique identifier. Removed parameters. Formatted dashes. Some additions/deletions were actually parameter name changes.| You can use this bot yourself. Report bugs here.| Activated by User:Headbomb 2019-07-29T04:05:50Z <p>Alter: template type. Add: bibcode, class, eprint, year, pmc, pmid, doi, pages, issue, volume, journal, author pars. 1-5. Removed URL that duplicated unique identifier. Removed parameters. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. Some additions/deletions were actually parameter name changes.| You can <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">use this bot</a> yourself. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs here</a>.| Activated by <a href="/wiki/User:Headbomb" title="User:Headbomb">User:Headbomb</a></p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:05, 29 July 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 51:</td> <td colspan="2" class="diff-lineno">Line 51:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Examples of research results developed by the CaN program include the following:</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Examples of research results developed by the CaN program include the following:</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* The identification of a multifocal theta band indicating a loss of balance during a balance beam walking exercise. The knowledge of electrocortical indications for balance loss could allow for a better clinical assessment. Preventative measures could be made for those predisposed to falls who exhibit this neural behavior.&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">web|url=https://www.physiology.org/doi/pdf/10.1152/jn.00744.2012</del>|title=Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response|<del style="font-weight: bold; text-decoration: none;">last</del>=|<del style="font-weight: bold; text-decoration: none;">first</del>=|<del style="font-weight: bold; text-decoration: none;">date</del>=|<del style="font-weight: bold; text-decoration: none;">website</del>=|<del style="font-weight: bold; text-decoration: none;">archive-url</del>=|<del style="font-weight: bold; text-decoration: none;">archive-date</del>=|<del style="font-weight: bold; text-decoration: none;">dead-url</del>=|<del style="font-weight: bold; text-decoration: none;">access-date</del>=}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* The identification of a multifocal theta band indicating a loss of balance during a balance beam walking exercise. The knowledge of electrocortical indications for balance loss could allow for a better clinical assessment. Preventative measures could be made for those predisposed to falls who exhibit this neural behavior.&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">journal</ins>|title=Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response|<ins style="font-weight: bold; text-decoration: none;">journal</ins>=<ins style="font-weight: bold; text-decoration: none;">Journal of Neurophysiology</ins>|<ins style="font-weight: bold; text-decoration: none;">volume</ins>=<ins style="font-weight: bold; text-decoration: none;">110</ins>|<ins style="font-weight: bold; text-decoration: none;">issue</ins>=<ins style="font-weight: bold; text-decoration: none;">9</ins>|<ins style="font-weight: bold; text-decoration: none;">pages</ins>=<ins style="font-weight: bold; text-decoration: none;">2050–2060</ins>|<ins style="font-weight: bold; text-decoration: none;">doi</ins>=<ins style="font-weight: bold; text-decoration: none;">10.1152/jn.00744.2012</ins>|<ins style="font-weight: bold; text-decoration: none;">pmid</ins>=<ins style="font-weight: bold; text-decoration: none;">23926037</ins>|<ins style="font-weight: bold; text-decoration: none;">pmc</ins>=<ins style="font-weight: bold; text-decoration: none;">3841925</ins>|<ins style="font-weight: bold; text-decoration: none;">year</ins>=<ins style="font-weight: bold; text-decoration: none;">2013|last1=Sipp|first1=Amy R.|last2=Gwin|first2=Joseph T.|last3=Makeig|first3=Scott|last4=Ferris|first4=Daniel P.</ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | <del style="font-weight: bold; text-decoration: none;">doi</del> = <del style="font-weight: bold; text-decoration: none;">10.3390/s110605819</del> | <del style="font-weight: bold; text-decoration: none;">url</del> = <del style="font-weight: bold; text-decoration: none;">http://www</del>.<del style="font-weight: bold; text-decoration: none;">mdpi.com</del>/<del style="font-weight: bold; text-decoration: none;">1424-8220/11/6/5819</del> }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A novel dry EEG electrode providing reliable results when applied to the scalp without any skin preparation. Researchers engineered this electrode to include a sensor-buffer effect, so that the application of force to the electrode against the scalp does not cause pain.&lt;ref&gt;{{cite journal | vauthors = Liao LD, Wang IJ, Chen SF, Chang JY, Lin CT | title = Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation | journal = Sensors | volume = 11 | issue = 6 | pages = 5819–34 | date = 2011-05-30 | pmid = 22163929 | <ins style="font-weight: bold; text-decoration: none;">pmc</ins> = <ins style="font-weight: bold; text-decoration: none;">3231409</ins> | <ins style="font-weight: bold; text-decoration: none;">doi</ins> = <ins style="font-weight: bold; text-decoration: none;">10</ins>.<ins style="font-weight: bold; text-decoration: none;">3390</ins>/<ins style="font-weight: bold; text-decoration: none;">s110605819</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of one’s learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">web|url=https://arxiv.org/pdf/1403.6034.pdf</del>|title=Learning-Induced Autonomy of Sensorimotor Systems|<del style="font-weight: bold; text-decoration: none;">last</del>=|<del style="font-weight: bold; text-decoration: none;">first</del>=|<del style="font-weight: bold; text-decoration: none;">date</del>=|<del style="font-weight: bold; text-decoration: none;">website</del>=|<del style="font-weight: bold; text-decoration: none;">archive-url</del>=|<del style="font-weight: bold; text-decoration: none;">archive-date</del>=|<del style="font-weight: bold; text-decoration: none;">dead-url</del>=|<del style="font-weight: bold; text-decoration: none;">access</del>-<del style="font-weight: bold; text-decoration: none;">date</del>=}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Using fMRI and a novel network analysis algorithm, researchers witnessed autonomy in the sensorimotor cortex throughout the motor learning process. The rate of one’s learning was due to personalized differences in the frontal and cingulate cortices.&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">arXiv</ins>|title=Learning-Induced Autonomy of Sensorimotor Systems|<ins style="font-weight: bold; text-decoration: none;">eprint </ins>=<ins style="font-weight: bold; text-decoration: none;"> 1403.6034</ins>|<ins style="font-weight: bold; text-decoration: none;">last1 </ins>=<ins style="font-weight: bold; text-decoration: none;"> Bassett</ins>|<ins style="font-weight: bold; text-decoration: none;">first1 </ins>=<ins style="font-weight: bold; text-decoration: none;"> Danielle S.</ins>|<ins style="font-weight: bold; text-decoration: none;">last2 </ins>=<ins style="font-weight: bold; text-decoration: none;"> Yang</ins>|<ins style="font-weight: bold; text-decoration: none;">first2 </ins>=<ins style="font-weight: bold; text-decoration: none;"> Muzhi</ins>|<ins style="font-weight: bold; text-decoration: none;">last3 </ins>=<ins style="font-weight: bold; text-decoration: none;"> Wymbs</ins>|<ins style="font-weight: bold; text-decoration: none;">first3 </ins>=<ins style="font-weight: bold; text-decoration: none;"> Nicholas F.</ins>|<ins style="font-weight: bold; text-decoration: none;">last4 = Grafton|first4 = Scott T.|class = q</ins>-<ins style="font-weight: bold; text-decoration: none;">bio.NC|year </ins>=<ins style="font-weight: bold; text-decoration: none;"> 2014</ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = <del style="font-weight: bold; text-decoration: none;">10.1186/1743-0003-9-35 | url = https://jneuroengrehab.biomedcentral.com/articles/</del>10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Results concerning neural network control and brain structure reported the following. Densely connected areas, especially in the [[Default mode network|default mode system]], have a large influence on the transition between cognitive states. Meanwhile, weakly connected areas, particularly in the [[Executive functions|executive function]] system, assist in transitioning to difficult-to-reach cognitive states. The integration of various cognitive systems is accomplished by areas of the brain at the boundaries of [[neural network]]s, particularly the attentive control systems.&lt;ref&gt;{{cite journal | vauthors = Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS | title = Controllability of structural brain networks | language = En | journal = Nature Communications | volume = 6 | issue = 1 | pages = 8414 | date = October 2015 | pmid = 26423222 | doi = 10.1038/ncomms9414 | <del style="font-weight: bold; text-decoration: none;">url</del> = <del style="font-weight: bold; text-decoration: none;">https://www</del>.<del style="font-weight: bold; text-decoration: none;">nature.com/articles/ncomms9414</del> | <del style="font-weight: bold; text-decoration: none;">arxiv</del> = <del style="font-weight: bold; text-decoration: none;">1406</del>.<del style="font-weight: bold; text-decoration: none;">5197</del> }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Results concerning neural network control and brain structure reported the following. Densely connected areas, especially in the [[Default mode network|default mode system]], have a large influence on the transition between cognitive states. Meanwhile, weakly connected areas, particularly in the [[Executive functions|executive function]] system, assist in transitioning to difficult-to-reach cognitive states. The integration of various cognitive systems is accomplished by areas of the brain at the boundaries of [[neural network]]s, particularly the attentive control systems.&lt;ref&gt;{{cite journal | vauthors = Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS | title = Controllability of structural brain networks | language = En | journal = Nature Communications | volume = 6 | issue = 1 | pages = 8414 | date = October 2015 | pmid = 26423222<ins style="font-weight: bold; text-decoration: none;"> | pmc = 4600713</ins> | doi = 10.1038/ncomms9414 | <ins style="font-weight: bold; text-decoration: none;">arxiv</ins> = <ins style="font-weight: bold; text-decoration: none;">1406</ins>.<ins style="font-weight: bold; text-decoration: none;">5197</ins> | <ins style="font-weight: bold; text-decoration: none;">bibcode</ins> = <ins style="font-weight: bold; text-decoration: none;">2015NatCo</ins>.<ins style="font-weight: bold; text-decoration: none;">..6.8414G</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* A filter bank [[Canonical correlation|CCA]]-based frequency detection analysis was used to improve the detection of [[Steady state visually evoked potential|SSVEPs]]. This CCA assisted in improving the speed of SSVEP-based BCI technology.&lt;ref&gt;{{Cite <del style="font-weight: bold; text-decoration: none;">web|url=http://iopscience.iop.org/article/10.1088/1741-2560/12/4/046008/ampdf</del>|title=Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface|<del style="font-weight: bold; text-decoration: none;">last</del>=|<del style="font-weight: bold; text-decoration: none;">first</del>=|<del style="font-weight: bold; text-decoration: none;">date</del>=|<del style="font-weight: bold; text-decoration: none;">website</del>=|<del style="font-weight: bold; text-decoration: none;">archive</del>-<del style="font-weight: bold; text-decoration: none;">url</del>=|<del style="font-weight: bold; text-decoration: none;">archive-date</del>=|<del style="font-weight: bold; text-decoration: none;">dead-url</del>=|<del style="font-weight: bold; text-decoration: none;">access</del>-<del style="font-weight: bold; text-decoration: none;">date</del>=}}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* A filter bank [[Canonical correlation|CCA]]-based frequency detection analysis was used to improve the detection of [[Steady state visually evoked potential|SSVEPs]]. This CCA assisted in improving the speed of SSVEP-based BCI technology.&lt;ref&gt;{{Cite <ins style="font-weight: bold; text-decoration: none;">journal</ins>|title=Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface|<ins style="font-weight: bold; text-decoration: none;">journal</ins>=<ins style="font-weight: bold; text-decoration: none;">Journal of Neural Engineering</ins>|<ins style="font-weight: bold; text-decoration: none;">volume</ins>=<ins style="font-weight: bold; text-decoration: none;">12</ins>|<ins style="font-weight: bold; text-decoration: none;">issue</ins>=<ins style="font-weight: bold; text-decoration: none;">4</ins>|<ins style="font-weight: bold; text-decoration: none;">pages</ins>=<ins style="font-weight: bold; text-decoration: none;">046008</ins>|<ins style="font-weight: bold; text-decoration: none;">doi=10.1088/1741</ins>-<ins style="font-weight: bold; text-decoration: none;">2560/12/4/046008|pmid</ins>=<ins style="font-weight: bold; text-decoration: none;">26035476</ins>|<ins style="font-weight: bold; text-decoration: none;">year</ins>=<ins style="font-weight: bold; text-decoration: none;">2015</ins>|<ins style="font-weight: bold; text-decoration: none;">last1</ins>=<ins style="font-weight: bold; text-decoration: none;">Chen</ins>|<ins style="font-weight: bold; text-decoration: none;">first1=Xiaogang|last2=Wang|first2=Yijun|last3=Gao|first3=Shangkai|last4=Jung|first4=Tzyy</ins>-<ins style="font-weight: bold; text-decoration: none;">Ping|last5</ins>=<ins style="font-weight: bold; text-decoration: none;">Gao|first5=Xiaorong|bibcode=2015JNEng..12d6008C</ins>}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td> </tr> </table> Citation bot https://en.wikipedia.org/w/index.php?title=Cognition_and_Neuroergonomics_Collaborative_Technology_Alliance&diff=907811702&oldid=prev OAbot: Open access bot: add arxiv identifier to citation with #oabot. 2019-07-25T12:55:34Z <p><a href="/wiki/Wikipedia:OABOT" title="Wikipedia:OABOT">Open access bot</a>: add arxiv identifier to citation with #oabot.</p> <table style="background-color: #fff; color: #202122;" data-mw="interface"> <col class="diff-marker" /> <col class="diff-content" /> <col class="diff-marker" /> <col class="diff-content" /> <tr class="diff-title" lang="en"> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td> <td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:55, 25 July 2019</td> </tr><tr> <td colspan="2" class="diff-lineno">Line 56:</td> <td colspan="2" class="diff-lineno">Line 56:</td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* An SSVEP BCI computer spelling program was developed. The spelling program operated at 40 words per minute and at a relatively high information transfer rate.&lt;ref&gt;{{cite journal | vauthors = Nakanishi M, Wang Y, Wang YT, Mitsukura Y, Jung TP | title = A high-speed brain speller using steady-state visual evoked potentials | journal = International Journal of Neural Systems | volume = 24 | issue = 6 | pages = 1450019 | date = September 2014 | pmid = 25081427 | doi = 10.1142/S0129065714500191 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35 | url = https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* Electrocortical dynamics were studied in relation to [[Isotonic contraction|isotonic]] and [[Isometric exercise|isometric]] lower limb muscle contractions. EEG in combination with an [[independent component analysis]] were used as a method of functional neuroimaging to better understand the relationship between muscle activity and electrocortical signals. This EEG/ICA system was reported to predict knee to ankle movements with 80% accuracy.&lt;ref&gt;{{cite journal | vauthors = Gwin JT, Ferris DP | title = An EEG-based study of discrete isometric and isotonic human lower limb muscle contractions | language = En | journal = Journal of Neuroengineering and Rehabilitation | volume = 9 | issue = 1 | pages = 35 | date = June 2012 | pmid = 22682644 | pmc = 3476535 | doi = 10.1186/1743-0003-9-35 | url = https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-9-35 }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker" data-marker="−"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* Results concerning neural network control and brain structure reported the following. Densely connected areas, especially in the [[Default mode network|default mode system]], have a large influence on the transition between cognitive states. Meanwhile, weakly connected areas, particularly in the [[Executive functions|executive function]] system, assist in transitioning to difficult-to-reach cognitive states. The integration of various cognitive systems is accomplished by areas of the brain at the boundaries of [[neural network]]s, particularly the attentive control systems.&lt;ref&gt;{{cite journal | vauthors = Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS | title = Controllability of structural brain networks | language = En | journal = Nature Communications | volume = 6 | issue = 1 | pages = 8414 | date = October 2015 | pmid = 26423222 | doi = 10.1038/ncomms9414 | url = https://www.nature.com/articles/ncomms9414 }}&lt;/ref&gt;</div></td> <td class="diff-marker" data-marker="+"></td> <td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* Results concerning neural network control and brain structure reported the following. Densely connected areas, especially in the [[Default mode network|default mode system]], have a large influence on the transition between cognitive states. Meanwhile, weakly connected areas, particularly in the [[Executive functions|executive function]] system, assist in transitioning to difficult-to-reach cognitive states. The integration of various cognitive systems is accomplished by areas of the brain at the boundaries of [[neural network]]s, particularly the attentive control systems.&lt;ref&gt;{{cite journal | vauthors = Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, Medaglia JD, Vettel JM, Miller MB, Grafton ST, Bassett DS | title = Controllability of structural brain networks | language = En | journal = Nature Communications | volume = 6 | issue = 1 | pages = 8414 | date = October 2015 | pmid = 26423222 | doi = 10.1038/ncomms9414 | url = https://www.nature.com/articles/ncomms9414<ins style="font-weight: bold; text-decoration: none;"> | arxiv = 1406.5197</ins> }}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A filter bank [[Canonical correlation|CCA]]-based frequency detection analysis was used to improve the detection of [[Steady state visually evoked potential|SSVEPs]]. This CCA assisted in improving the speed of SSVEP-based BCI technology.&lt;ref&gt;{{Cite web|url=http://iopscience.iop.org/article/10.1088/1741-2560/12/4/046008/ampdf|title=Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}&lt;/ref&gt;</div></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* A filter bank [[Canonical correlation|CCA]]-based frequency detection analysis was used to improve the detection of [[Steady state visually evoked potential|SSVEPs]]. This CCA assisted in improving the speed of SSVEP-based BCI technology.&lt;ref&gt;{{Cite web|url=http://iopscience.iop.org/article/10.1088/1741-2560/12/4/046008/ampdf|title=Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface|last=|first=|date=|website=|archive-url=|archive-date=|dead-url=|access-date=}}&lt;/ref&gt;</div></td> </tr> <tr> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> <td class="diff-marker"></td> <td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td> </tr> </table> OAbot