https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Concatenation_theoryConcatenation theory - Revision history2025-01-06T13:14:28ZRevision history for this page on the wikiMediaWiki 1.44.0-wmf.8https://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=1252711935&oldid=prev78.133.210.58: Removed hatnote, nothing with “string” in title redirects here2024-10-22T16:40:54Z<p>Removed hatnote, nothing with “string” in title redirects here</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:40, 22 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{for|the theory of strings in physics|String theory}}</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Concatenation theory''', also called '''string theory''', '''character-string theory''', or '''theoretical [[syntax]]''', studies [[String (computer science)|character strings]] over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for [[formal linguistics]], computer science, logic, and metamathematics especially proof theory.<ref>John Corcoran and Matt Lavine, "Discovering string theory". ''Bulletin of Symbolic Logic''. 19 (2013) 253–4.</ref> A [[generative grammar]] can be seen as a recursive definition in string theory.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Concatenation theory''', also called '''string theory''', '''character-string theory''', or '''theoretical [[syntax]]''', studies [[String (computer science)|character strings]] over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for [[formal linguistics]], computer science, logic, and metamathematics especially proof theory.<ref>John Corcoran and Matt Lavine, "Discovering string theory". ''Bulletin of Symbolic Logic''. 19 (2013) 253–4.</ref> A [[generative grammar]] can be seen as a recursive definition in string theory.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>78.133.210.58https://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=1252711597&oldid=prev78.133.210.58: Category:String (computer science)2024-10-22T16:39:16Z<p><a href="/wiki/Category:String_(computer_science)" title="Category:String (computer science)">Category:String (computer science)</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:39, 22 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 10:</td>
<td colspan="2" class="diff-lineno">Line 10:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Reflist}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:String (computer science)]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Logic]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Logic]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Syntax]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Syntax]]</div></td>
</tr>
</table>78.133.210.58https://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=1133980746&oldid=prevFatalSubjectivities: spellling2023-01-16T12:14:12Z<p>spellling</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 12:14, 16 January 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski's 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[<del style="font-weight: bold; text-decoration: none;">Pierce</del>'s type-token distinction]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski's 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[<ins style="font-weight: bold; text-decoration: none;">Peirce</ins>'s type-token distinction]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>FatalSubjectivitieshttps://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=1112737120&oldid=prevFrescoBot: Bot: link syntax2022-09-27T20:50:28Z<p>Bot: <a href="/wiki/User:FrescoBot/Links" class="mw-redirect" title="User:FrescoBot/Links">link syntax</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 20:50, 27 September 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[<del style="font-weight: bold; text-decoration: none;">Hans Hermes|</del>Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski's 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski's 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>FrescoBothttps://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=1100329447&oldid=prevChiswick Chap: /* top */ rm overlink (and uncited text)2022-07-25T10:22:27Z<p><span class="autocomment">top: </span> rm overlink (and uncited text)</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 10:22, 25 July 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski's 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]]<del style="font-weight: bold; text-decoration: none;">, not to be confused with similar distinctions underlying other [[type-token distinction]]s</del>.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski's 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Chiswick Chaphttps://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=1100005346&oldid=prevZagreus99 at 19:01, 23 July 20222022-07-23T19:01:52Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:01, 23 July 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[<del style="font-weight: bold; text-decoration: none;">:de:</del>Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski's 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]], not to be confused with similar distinctions underlying other [[type-token distinction]]s.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski's 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]], not to be confused with similar distinctions underlying other [[type-token distinction]]s.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Zagreus99https://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=966545683&oldid=prevWeidorje at 18:11, 7 July 20202020-07-07T18:11:27Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:11, 7 July 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{for|the theory of strings in physics|String theory}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{for|the theory of strings in physics|String theory}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''Concatenation theory''', also called '''string theory''', '''character-string theory''', or '''theoretical [[syntax]]''', studies [[String (computer science)|character strings]] over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for formal linguistics, computer science, logic, and metamathematics especially proof theory.<ref>John Corcoran and Matt Lavine, "Discovering string theory". ''Bulletin of Symbolic Logic''. 19 (2013) 253–4.</ref> A [[generative grammar]] can be seen as a recursive definition in string theory.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''Concatenation theory''', also called '''string theory''', '''character-string theory''', or '''theoretical [[syntax]]''', studies [[String (computer science)|character strings]] over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for <ins style="font-weight: bold; text-decoration: none;">[[</ins>formal linguistics<ins style="font-weight: bold; text-decoration: none;">]]</ins>, computer science, logic, and metamathematics especially proof theory.<ref>John Corcoran and Matt Lavine, "Discovering string theory". ''Bulletin of Symbolic Logic''. 19 (2013) 253–4.</ref> A [[generative grammar]] can be seen as a recursive definition in string theory.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
</tr>
</table>Weidorjehttps://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=874443375&oldid=prevI dream of horses: /* top */clean up, typo(s) fixed: Tarski’s → Tarski's2018-12-19T08:21:30Z<p><span class="autocomment">top: </span>clean up, <a href="/wiki/Wikipedia:AWB/T" class="mw-redirect" title="Wikipedia:AWB/T">typo(s) fixed</a>: Tarski’s → Tarski's</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 08:21, 19 December 2018</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]; connect two strings to form a longer string whose length is the sum of the lengths of those two strings. ABCDE is the concatenation of AB with CDE, in symbols ABCDE = AB ^ CDE. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[:de:Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of <del style="font-weight: bold; text-decoration: none;">Tarski’s</del> 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]], not to be confused with similar distinctions underlying other [[type-token distinction]]s.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[:de:Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of <ins style="font-weight: bold; text-decoration: none;">Tarski's</ins> 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]], not to be confused with similar distinctions underlying other [[type-token distinction]]s.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>I dream of horseshttps://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=764132656&oldid=prev68.4.165.110 at 07:15, 7 February 20172017-02-07T07:15:36Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:15, 7 February 2017</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Concatenation theory''', also called '''string theory''', '''character-string theory''', or '''theoretical [[syntax]]''', studies [[String (computer science)|character strings]] over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for formal linguistics, computer science, logic, and metamathematics especially proof theory.<ref>John Corcoran and Matt Lavine, "Discovering string theory". ''Bulletin of Symbolic Logic''. 19 (2013) 253–4.</ref> A [[generative grammar]] can be seen as a recursive definition in string theory.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Concatenation theory''', also called '''string theory''', '''character-string theory''', or '''theoretical [[syntax]]''', studies [[String (computer science)|character strings]] over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for formal linguistics, computer science, logic, and metamathematics especially proof theory.<ref>John Corcoran and Matt Lavine, "Discovering string theory". ''Bulletin of Symbolic Logic''. 19 (2013) 253–4.</ref> A [[generative grammar]] can be seen as a recursive definition in string theory.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]<del style="font-weight: bold; text-decoration: none;">,</del> <del style="font-weight: bold; text-decoration: none;">connecting</del> two strings to form a longer string whose length is the sum of the lengths of those two strings<del style="font-weight: bold; text-decoration: none;">:</del> <del style="font-weight: bold; text-decoration: none;">abcde</del> is the concatenation of <del style="font-weight: bold; text-decoration: none;">ab</del> with <del style="font-weight: bold; text-decoration: none;">cde</del>, in symbols <del style="font-weight: bold; text-decoration: none;">abcde</del> = <del style="font-weight: bold; text-decoration: none;">ab</del> ^ <del style="font-weight: bold; text-decoration: none;">cde</del>. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]]<ins style="font-weight: bold; text-decoration: none;">;</ins> <ins style="font-weight: bold; text-decoration: none;">connect</ins> two strings to form a longer string whose length is the sum of the lengths of those two strings<ins style="font-weight: bold; text-decoration: none;">.</ins> <ins style="font-weight: bold; text-decoration: none;">ABCDE</ins> is the concatenation of <ins style="font-weight: bold; text-decoration: none;">AB</ins> with <ins style="font-weight: bold; text-decoration: none;">CDE</ins>, in symbols <ins style="font-weight: bold; text-decoration: none;">ABCDE</ins> = <ins style="font-weight: bold; text-decoration: none;">AB</ins> ^ <ins style="font-weight: bold; text-decoration: none;">CDE</ins>. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[:de:Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski’s 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]], not to be confused with similar distinctions underlying other [[type-token distinction]]s.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[:de:Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski’s 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]], not to be confused with similar distinctions underlying other [[type-token distinction]]s.</div></td>
</tr>
</table>68.4.165.110https://en.wikipedia.org/w/index.php?title=Concatenation_theory&diff=764132501&oldid=prev68.4.165.110: will probably be reverted but: Already referred to the "operands" a word I wasn't immediately familiar with as strings at least 3 times earlier in the same sentence (internal consistency).2017-02-07T07:13:39Z<p>will probably be reverted but: Already referred to the "operands" a word I wasn't immediately familiar with as strings at least 3 times earlier in the same sentence (internal consistency).</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:13, 7 February 2017</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Concatenation theory''', also called '''string theory''', '''character-string theory''', or '''theoretical [[syntax]]''', studies [[String (computer science)|character strings]] over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for formal linguistics, computer science, logic, and metamathematics especially proof theory.<ref>John Corcoran and Matt Lavine, "Discovering string theory". ''Bulletin of Symbolic Logic''. 19 (2013) 253–4.</ref> A [[generative grammar]] can be seen as a recursive definition in string theory.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''Concatenation theory''', also called '''string theory''', '''character-string theory''', or '''theoretical [[syntax]]''', studies [[String (computer science)|character strings]] over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for formal linguistics, computer science, logic, and metamathematics especially proof theory.<ref>John Corcoran and Matt Lavine, "Discovering string theory". ''Bulletin of Symbolic Logic''. 19 (2013) 253–4.</ref> A [[generative grammar]] can be seen as a recursive definition in string theory.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]], connecting two strings to form a longer string whose length is the sum of the lengths of <del style="font-weight: bold; text-decoration: none;">the</del> <del style="font-weight: bold; text-decoration: none;">operands</del>: abcde is the concatenation of ab with cde, in symbols abcde = ab ^ cde. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The most basic operation on strings is [[concatenation]], connecting two strings to form a longer string whose length is the sum of the lengths of <ins style="font-weight: bold; text-decoration: none;">those</ins> <ins style="font-weight: bold; text-decoration: none;">two strings</ins>: abcde is the concatenation of ab with cde, in symbols abcde = ab ^ cde. Strings, and concatenation of strings can be treated as an algebraic system with some properties resembling those of the addition of integers; in modern mathematics, this system is called a [[free monoid]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[:de:Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski’s 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]], not to be confused with similar distinctions underlying other [[type-token distinction]]s.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In 1956 [[Alonzo Church]] wrote: "Like any branch of mathematics, theoretical syntax may, and ultimately must, be studied by the axiomatic method".<ref>Alonzo Church, ''Introduction to Mathematical Logic'', Princeton UP, Princeton, 1956</ref> Church was evidently unaware that string theory already had two axiomatizations from the 1930s: one by [[:de:Hans Hermes|Hans Hermes]] and one by [[Alfred Tarski]].<ref>[[John Corcoran (logician)|John Corcoran]], William Frank and Michael Maloney, "String theory", ''Journal of Symbolic Logic'', vol. 39 (1974) pp. 625&ndash; 637</ref> Coincidentally, the first English presentation of Tarski’s 1933 axiomatic foundations of string theory appeared in 1956 – the same year that Church called for such axiomatizations.<ref>Pages 173&ndash;4 of Alfred Tarski, ''The concept of truth in formalized languages'', reprinted in ''Logic, Semantics, Metamathematics'', Hackett, Indianapolis, 1983, pp. 152–278</ref> As Tarski himself noted using other terminology, serious difficulties arise if strings are construed as tokens rather than types in the sense of [[Pierce's type-token distinction]], not to be confused with similar distinctions underlying other [[type-token distinction]]s.</div></td>
</tr>
</table>68.4.165.110