https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Cooling_towerCooling tower - Revision history2024-10-30T05:26:08ZRevision history for this page on the wikiMediaWiki 1.43.0-wmf.28https://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1253351409&oldid=prevCypress Fall: spelling2024-10-25T14:39:22Z<p>spelling</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:39, 25 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 11:</td>
<td colspan="2" class="diff-lineno">Line 11:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Common applications include cooling the circulating water used in [[oil refineries]], [[petrochemical]] and other [[chemical plant]]s, [[thermal power station]]s, [[nuclear power station]]s and [[HVAC]] systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are [[Natural convection|natural draft]] and [[Forced convection|induced draft]] cooling towers.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Common applications include cooling the circulating water used in [[oil refineries]], [[petrochemical]] and other [[chemical plant]]s, [[thermal power station]]s, [[nuclear power station]]s and [[HVAC]] systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are [[Natural convection|natural draft]] and [[Forced convection|induced draft]] cooling towers.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Cooling towers vary in size from small roof-top units to very large [[hyperboloid structure]]s that can be up to {{convert|200|m|ft}} tall and {{convert|100|m|ft}} in diameter, or rectangular structures that can be over {{convert|40|m|ft}} tall and {{convert|80|m|ft}} long. Hyperboloid cooling towers are often associated with [[nuclear power plant]]s,<ref>{{cite web|website=CleanEnergy Footprints (cleanenergy.org)|url=http://blog.cleanenergy.org/2012/12/31/identifying-nuclear-reactors-in-google-earth/|title=Identifying Nuclear Reactors in Google Earth|date=31 December 2012|access-date=19 May 2014|archive-date=23 October 2014|archive-url=https://web.archive.org/web/20141023052158/http://blog.cleanenergy.org/2012/12/31/identifying-nuclear-reactors-in-google-earth/|url-status=dead}}</ref> although they are also used in many coal-fired plants and to some extent in some large chemical and other industrial plants. The [[steam turbine]] is what necessitates the cooling tower. Although these large towers are very prominent, the vast majority of cooling towers are much smaller, including many units installed on or near buildings to discharge heat from [[air conditioning]]. Cooling towers are also often thought to emit [[smoke]] or harmful fumes by the general public and <del style="font-weight: bold; text-decoration: none;">enviromental</del> activists, when in reality the emissions from those towers mostly do not contribute to [[carbon footprint]], consisting solely of [[water vapor]].<ref>{{Cite web |date=2007-02-15 |title=Myth of cooling towers is symptomatic of global warming information shortage |url=https://www.rsc.org/news-events/articles/2007/02-february/cooling-towers/ |access-date=2022-03-02 |website=[[Royal Society of Chemistry]] |language=en-GB}}</ref><ref>{{Cite web |last= |first= |date=2017-07-24 |title=What you need to know about nuclear cooling towers |url=https://nuclear.duke-energy.com/2017/07/24/blog_post-20170724 |access-date=2022-03-02 |website=[[Duke Energy]] {{!}} Nuclear Information Center |language=en}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Cooling towers vary in size from small roof-top units to very large [[hyperboloid structure]]s that can be up to {{convert|200|m|ft}} tall and {{convert|100|m|ft}} in diameter, or rectangular structures that can be over {{convert|40|m|ft}} tall and {{convert|80|m|ft}} long. Hyperboloid cooling towers are often associated with [[nuclear power plant]]s,<ref>{{cite web|website=CleanEnergy Footprints (cleanenergy.org)|url=http://blog.cleanenergy.org/2012/12/31/identifying-nuclear-reactors-in-google-earth/|title=Identifying Nuclear Reactors in Google Earth|date=31 December 2012|access-date=19 May 2014|archive-date=23 October 2014|archive-url=https://web.archive.org/web/20141023052158/http://blog.cleanenergy.org/2012/12/31/identifying-nuclear-reactors-in-google-earth/|url-status=dead}}</ref> although they are also used in many coal-fired plants and to some extent in some large chemical and other industrial plants. The [[steam turbine]] is what necessitates the cooling tower. Although these large towers are very prominent, the vast majority of cooling towers are much smaller, including many units installed on or near buildings to discharge heat from [[air conditioning]]. Cooling towers are also often thought to emit [[smoke]] or harmful fumes by the general public and <ins style="font-weight: bold; text-decoration: none;">environmental</ins> activists, when in reality the emissions from those towers mostly do not contribute to [[carbon footprint]], consisting solely of [[water vapor]].<ref>{{Cite web |date=2007-02-15 |title=Myth of cooling towers is symptomatic of global warming information shortage |url=https://www.rsc.org/news-events/articles/2007/02-february/cooling-towers/ |access-date=2022-03-02 |website=[[Royal Society of Chemistry]] |language=en-GB}}</ref><ref>{{Cite web |last= |first= |date=2017-07-24 |title=What you need to know about nuclear cooling towers |url=https://nuclear.duke-energy.com/2017/07/24/blog_post-20170724 |access-date=2022-03-02 |website=[[Duke Energy]] {{!}} Nuclear Information Center |language=en}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td>
</tr>
<!-- diff cache key enwiki:diff:1.41:old-1249772628:rev-1253351409:wikidiff2=table:1.14.1:ff290eae -->
</table>Cypress Fallhttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1249772628&oldid=prevTrasheater Midir at 19:09, 6 October 20242024-10-06T19:09:33Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:09, 6 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 11:</td>
<td colspan="2" class="diff-lineno">Line 11:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Common applications include cooling the circulating water used in [[oil refineries]], [[petrochemical]] and other [[chemical plant]]s, [[thermal power station]]s, [[nuclear power station]]s and [[HVAC]] systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are [[Natural convection|natural draft]] and [[Forced convection|induced draft]] cooling towers.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Common applications include cooling the circulating water used in [[oil refineries]], [[petrochemical]] and other [[chemical plant]]s, [[thermal power station]]s, [[nuclear power station]]s and [[HVAC]] systems for cooling buildings. The classification is based on the type of air induction into the tower: the main types of cooling towers are [[Natural convection|natural draft]] and [[Forced convection|induced draft]] cooling towers.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Cooling towers vary in size from small roof-top units to very large [[hyperboloid structure]]s that can be up to {{convert|200|m|ft}} tall and {{convert|100|m|ft}} in diameter, or rectangular structures that can be over {{convert|40|m|ft}} tall and {{convert|80|m|ft}} long. Hyperboloid cooling towers are often associated with [[nuclear power plant]]s,<ref>{{cite web|website=CleanEnergy Footprints (cleanenergy.org)|url=http://blog.cleanenergy.org/2012/12/31/identifying-nuclear-reactors-in-google-earth/|title=Identifying Nuclear Reactors in Google Earth|date=31 December 2012|access-date=19 May 2014|archive-date=23 October 2014|archive-url=https://web.archive.org/web/20141023052158/http://blog.cleanenergy.org/2012/12/31/identifying-nuclear-reactors-in-google-earth/|url-status=dead}}</ref> although they are also used in many coal-fired plants and to some extent in some large chemical and other industrial plants. The [[steam turbine]] is what necessitates the cooling tower. Although these large towers are very prominent, the vast majority of cooling towers are much smaller, including many units installed on or near buildings to discharge heat from [[air conditioning]]. Cooling towers are also often thought to emit [[smoke]] or harmful fumes by the general public, when in reality the emissions from those towers mostly do not contribute to [[carbon footprint]], consisting solely of [[water vapor]].<ref>{{Cite web |date=2007-02-15 |title=Myth of cooling towers is symptomatic of global warming information shortage |url=https://www.rsc.org/news-events/articles/2007/02-february/cooling-towers/ |access-date=2022-03-02 |website=[[Royal Society of Chemistry]] |language=en-GB}}</ref><ref>{{Cite web |last= |first= |date=2017-07-24 |title=What you need to know about nuclear cooling towers |url=https://nuclear.duke-energy.com/2017/07/24/blog_post-20170724 |access-date=2022-03-02 |website=[[Duke Energy]] {{!}} Nuclear Information Center |language=en}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Cooling towers vary in size from small roof-top units to very large [[hyperboloid structure]]s that can be up to {{convert|200|m|ft}} tall and {{convert|100|m|ft}} in diameter, or rectangular structures that can be over {{convert|40|m|ft}} tall and {{convert|80|m|ft}} long. Hyperboloid cooling towers are often associated with [[nuclear power plant]]s,<ref>{{cite web|website=CleanEnergy Footprints (cleanenergy.org)|url=http://blog.cleanenergy.org/2012/12/31/identifying-nuclear-reactors-in-google-earth/|title=Identifying Nuclear Reactors in Google Earth|date=31 December 2012|access-date=19 May 2014|archive-date=23 October 2014|archive-url=https://web.archive.org/web/20141023052158/http://blog.cleanenergy.org/2012/12/31/identifying-nuclear-reactors-in-google-earth/|url-status=dead}}</ref> although they are also used in many coal-fired plants and to some extent in some large chemical and other industrial plants. The [[steam turbine]] is what necessitates the cooling tower. Although these large towers are very prominent, the vast majority of cooling towers are much smaller, including many units installed on or near buildings to discharge heat from [[air conditioning]]. Cooling towers are also often thought to emit [[smoke]] or harmful fumes by the general public<ins style="font-weight: bold; text-decoration: none;"> and enviromental activists</ins>, when in reality the emissions from those towers mostly do not contribute to [[carbon footprint]], consisting solely of [[water vapor]].<ref>{{Cite web |date=2007-02-15 |title=Myth of cooling towers is symptomatic of global warming information shortage |url=https://www.rsc.org/news-events/articles/2007/02-february/cooling-towers/ |access-date=2022-03-02 |website=[[Royal Society of Chemistry]] |language=en-GB}}</ref><ref>{{Cite web |last= |first= |date=2017-07-24 |title=What you need to know about nuclear cooling towers |url=https://nuclear.duke-energy.com/2017/07/24/blog_post-20170724 |access-date=2022-03-02 |website=[[Duke Energy]] {{!}} Nuclear Information Center |language=en}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==History==</div></td>
</tr>
</table>Trasheater Midirhttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1248731658&oldid=prevStephan Leeds: /* Use as a flue-gas stack */ hyphen missing from compound modifier2024-10-01T04:44:49Z<p><span class="autocomment">Use as a flue-gas stack: </span> hyphen missing from compound modifier</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:44, 1 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 349:</td>
<td colspan="2" class="diff-lineno">Line 349:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Use as a flue-gas stack==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Use as a flue-gas stack==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>[[File:Chimney included in cooling tower.jpg|upright|thumb|left|Flue<del style="font-weight: bold; text-decoration: none;"> </del>gas stack inside a natural draft wet cooling tower]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[File:Chimney included in cooling tower.jpg|upright|thumb|left|Flue<ins style="font-weight: bold; text-decoration: none;">-</ins>gas stack inside a natural draft wet cooling tower]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Power station Duisburg Walsum.JPG|thumb|Flue gas stack connection into a natural draft wet cooling tower]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Power station Duisburg Walsum.JPG|thumb|Flue gas stack connection into a natural draft wet cooling tower]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At some modern power stations equipped with [[flue-gas desulfurization|flue gas purification]], such as the [[Großkrotzenburg Power Station]] and the [[Rostock Power Station]], the cooling tower is also used as a [[flue-gas stack]] (industrial chimney), thus saving the cost of a separate chimney structure. At plants without flue gas purification, problems with corrosion may occur, due to reactions of raw flue gas with water to form [[acid]]s.{{Cn|date=May 2021}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>At some modern power stations equipped with [[flue-gas desulfurization|flue gas purification]], such as the [[Großkrotzenburg Power Station]] and the [[Rostock Power Station]], the cooling tower is also used as a [[flue-gas stack]] (industrial chimney), thus saving the cost of a separate chimney structure. At plants without flue gas purification, problems with corrosion may occur, due to reactions of raw flue gas with water to form [[acid]]s.{{Cn|date=May 2021}}</div></td>
</tr>
</table>Stephan Leedshttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1248731613&oldid=prevStephan Leeds: /* Salt emission pollution */ false implication that air is affected by nation-state borders2024-10-01T04:44:22Z<p><span class="autocomment">Salt emission pollution: </span> false implication that air is affected by nation-state borders</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:44, 1 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 344:</td>
<td colspan="2" class="diff-lineno">Line 344:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Salt emission pollution==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Salt emission pollution==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>When wet cooling towers with seawater make-up are installed in various industries located in or near coastal areas, the drift of fine droplets emitted from the cooling towers contain nearly 6% sodium chloride which deposits on the nearby land areas. This deposition of sodium salts on the nearby agriculture and vegetative lands can convert them into [[Soil salinity control|sodic saline]] or [[Alkali soils|sodic alkaline soils]] depending on the nature of the soil and enhance the [[Sodium adsorption ratio|sodicity]] of ground and surface water. The salt deposition problem from such cooling towers aggravates where<del style="font-weight: bold; text-decoration: none;"> national</del> pollution control standards are not imposed or not implemented to minimize the drift emissions from wet cooling towers using seawater make-up.<ref name="wet cooling">[http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=2ED8CFA7-1 Wet Cooling Tower Guidance For Particulate Matter, Environment Canada] {{Webarchive|url=https://web.archive.org/web/20150403110105/http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=2ED8CFA7-1 |date=3 April 2015 }}, Retrieved on 2013-01-29</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>When wet cooling towers with seawater make-up are installed in various industries located in or near coastal areas, the drift of fine droplets emitted from the cooling towers contain nearly 6% sodium chloride which deposits on the nearby land areas. This deposition of sodium salts on the nearby agriculture and vegetative lands can convert them into [[Soil salinity control|sodic saline]] or [[Alkali soils|sodic alkaline soils]] depending on the nature of the soil and enhance the [[Sodium adsorption ratio|sodicity]] of ground and surface water. The salt deposition problem from such cooling towers aggravates where pollution control standards are not imposed or not implemented to minimize the drift emissions from wet cooling towers using seawater make-up.<ref name="wet cooling">[http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=2ED8CFA7-1 Wet Cooling Tower Guidance For Particulate Matter, Environment Canada] {{Webarchive|url=https://web.archive.org/web/20150403110105/http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=2ED8CFA7-1 |date=3 April 2015 }}, Retrieved on 2013-01-29</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Respirable suspended particle|Respirable suspended particulate matter]], of less than 10 [[micrometre|micrometers]] (μm) in size, can be present in the drift from cooling towers. Larger particles above 10&nbsp;μm in size are generally filtered out in the nose and throat via cilia and mucus but particulate matter smaller than 10&nbsp;μm, referred to as PM<sub>10</sub>, can settle in the bronchi and lungs and cause health problems. Similarly, particles smaller than 2.5&nbsp;μm, (PM<sub>2.5</sub>), tend to penetrate into the gas exchange regions of the lung, and very small particles (less than 100 nanometers) may pass through the lungs to affect other organs. Though the total particulate emissions from wet cooling towers with fresh water make-up is much less, they contain more PM<sub>10</sub> and PM<sub>2.5</sub> than the total emissions from wet cooling towers with sea water make-up. This is due to lesser salt content in fresh water drift (below 2,000&nbsp;ppm) compared to the salt content of sea water drift (60,000&nbsp;ppm).<ref name="wet cooling" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Respirable suspended particle|Respirable suspended particulate matter]], of less than 10 [[micrometre|micrometers]] (μm) in size, can be present in the drift from cooling towers. Larger particles above 10&nbsp;μm in size are generally filtered out in the nose and throat via cilia and mucus but particulate matter smaller than 10&nbsp;μm, referred to as PM<sub>10</sub>, can settle in the bronchi and lungs and cause health problems. Similarly, particles smaller than 2.5&nbsp;μm, (PM<sub>2.5</sub>), tend to penetrate into the gas exchange regions of the lung, and very small particles (less than 100 nanometers) may pass through the lungs to affect other organs. Though the total particulate emissions from wet cooling towers with fresh water make-up is much less, they contain more PM<sub>10</sub> and PM<sub>2.5</sub> than the total emissions from wet cooling towers with sea water make-up. This is due to lesser salt content in fresh water drift (below 2,000&nbsp;ppm) compared to the salt content of sea water drift (60,000&nbsp;ppm).<ref name="wet cooling" /></div></td>
</tr>
</table>Stephan Leedshttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1248731566&oldid=prevStephan Leeds: /* Salt emission pollution */ improper register2024-10-01T04:43:51Z<p><span class="autocomment">Salt emission pollution: </span> improper register</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:43, 1 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 344:</td>
<td colspan="2" class="diff-lineno">Line 344:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Salt emission pollution==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Salt emission pollution==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>When wet cooling towers with seawater make-up are installed in various industries located in or near coastal areas, the drift of fine droplets emitted from the cooling towers contain nearly 6% sodium chloride which deposits on the nearby land areas. This deposition of sodium salts on the nearby agriculture<del style="font-weight: bold; text-decoration: none;">/</del>vegetative lands can convert them into [[Soil salinity control|sodic saline]] or [[Alkali soils|sodic alkaline soils]] depending on the nature of the soil and enhance the [[Sodium adsorption ratio|sodicity]] of ground and surface water. The salt deposition problem from such cooling towers aggravates where national pollution control standards are not imposed or not implemented to minimize the drift emissions from wet cooling towers using seawater make-up.<ref name="wet cooling">[http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=2ED8CFA7-1 Wet Cooling Tower Guidance For Particulate Matter, Environment Canada] {{Webarchive|url=https://web.archive.org/web/20150403110105/http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=2ED8CFA7-1 |date=3 April 2015 }}, Retrieved on 2013-01-29</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>When wet cooling towers with seawater make-up are installed in various industries located in or near coastal areas, the drift of fine droplets emitted from the cooling towers contain nearly 6% sodium chloride which deposits on the nearby land areas. This deposition of sodium salts on the nearby agriculture<ins style="font-weight: bold; text-decoration: none;"> and </ins>vegetative lands can convert them into [[Soil salinity control|sodic saline]] or [[Alkali soils|sodic alkaline soils]] depending on the nature of the soil and enhance the [[Sodium adsorption ratio|sodicity]] of ground and surface water. The salt deposition problem from such cooling towers aggravates where national pollution control standards are not imposed or not implemented to minimize the drift emissions from wet cooling towers using seawater make-up.<ref name="wet cooling">[http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=2ED8CFA7-1 Wet Cooling Tower Guidance For Particulate Matter, Environment Canada] {{Webarchive|url=https://web.archive.org/web/20150403110105/http://www.ec.gc.ca/inrp-npri/default.asp?lang=En&n=2ED8CFA7-1 |date=3 April 2015 }}, Retrieved on 2013-01-29</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Respirable suspended particle|Respirable suspended particulate matter]], of less than 10 [[micrometre|micrometers]] (μm) in size, can be present in the drift from cooling towers. Larger particles above 10&nbsp;μm in size are generally filtered out in the nose and throat via cilia and mucus but particulate matter smaller than 10&nbsp;μm, referred to as PM<sub>10</sub>, can settle in the bronchi and lungs and cause health problems. Similarly, particles smaller than 2.5&nbsp;μm, (PM<sub>2.5</sub>), tend to penetrate into the gas exchange regions of the lung, and very small particles (less than 100 nanometers) may pass through the lungs to affect other organs. Though the total particulate emissions from wet cooling towers with fresh water make-up is much less, they contain more PM<sub>10</sub> and PM<sub>2.5</sub> than the total emissions from wet cooling towers with sea water make-up. This is due to lesser salt content in fresh water drift (below 2,000&nbsp;ppm) compared to the salt content of sea water drift (60,000&nbsp;ppm).<ref name="wet cooling" /></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Respirable suspended particle|Respirable suspended particulate matter]], of less than 10 [[micrometre|micrometers]] (μm) in size, can be present in the drift from cooling towers. Larger particles above 10&nbsp;μm in size are generally filtered out in the nose and throat via cilia and mucus but particulate matter smaller than 10&nbsp;μm, referred to as PM<sub>10</sub>, can settle in the bronchi and lungs and cause health problems. Similarly, particles smaller than 2.5&nbsp;μm, (PM<sub>2.5</sub>), tend to penetrate into the gas exchange regions of the lung, and very small particles (less than 100 nanometers) may pass through the lungs to affect other organs. Though the total particulate emissions from wet cooling towers with fresh water make-up is much less, they contain more PM<sub>10</sub> and PM<sub>2.5</sub> than the total emissions from wet cooling towers with sea water make-up. This is due to lesser salt content in fresh water drift (below 2,000&nbsp;ppm) compared to the salt content of sea water drift (60,000&nbsp;ppm).<ref name="wet cooling" /></div></td>
</tr>
</table>Stephan Leedshttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1248731264&oldid=prevStephan Leeds: /* Terminology */ random capitalization × 32024-10-01T04:40:48Z<p><span class="autocomment">Terminology: </span> random capitalization × 3</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:40, 1 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 291:</td>
<td colspan="2" class="diff-lineno">Line 291:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*'''Plume'''{{dash}}The stream of saturated exhaust air leaving the cooling tower. The plume is visible when water vapor it contains condenses in contact with cooler ambient air, like the saturated air in one's breath fogs on a cold day. Under certain conditions, a cooling tower plume may present fogging or icing hazards to its surroundings. Note that the water evaporated in the cooling process is "pure" water, in contrast to the very small percentage of drift droplets or water blown out of the air inlets.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*'''Plume'''{{dash}}The stream of saturated exhaust air leaving the cooling tower. The plume is visible when water vapor it contains condenses in contact with cooler ambient air, like the saturated air in one's breath fogs on a cold day. Under certain conditions, a cooling tower plume may present fogging or icing hazards to its surroundings. Note that the water evaporated in the cooling process is "pure" water, in contrast to the very small percentage of drift droplets or water blown out of the air inlets.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Draw-off|Blow-down}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Draw-off|Blow-down}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Draw-off''' or '''blow-down'''{{dash}}The portion of the circulating water flow that is removed (usually discharged to a drain) in order to maintain the amount of [[<del style="font-weight: bold; text-decoration: none;">Total</del> <del style="font-weight: bold; text-decoration: none;">Dissolved</del> <del style="font-weight: bold; text-decoration: none;">Solids</del>]] (TDS) and other impurities at an acceptably low level. Higher TDS concentration in solution may result from greater cooling tower efficiency. However the higher the TDS concentration, the greater the risk of scale, biological growth, and corrosion. The amount of blow-down is primarily regulated by measuring by the [[electrical conductivity]] of the circulating water. Biological growth, scaling, and corrosion can be prevented by chemicals (respectively, biocide, sulfuric acid, corrosion inhibitor). On the other hand, the only practical way to decrease the electrical conductivity is by increasing the amount of blow-down discharge and subsequently increasing the amount of clean make-up water.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Draw-off''' or '''blow-down'''{{dash}}The portion of the circulating water flow that is removed (usually discharged to a drain) in order to maintain the amount of [[<ins style="font-weight: bold; text-decoration: none;">total</ins> <ins style="font-weight: bold; text-decoration: none;">dissolved</ins> <ins style="font-weight: bold; text-decoration: none;">solids</ins>]] (TDS) and other impurities at an acceptably low level. Higher TDS concentration in solution may result from greater cooling tower efficiency. However the higher the TDS concentration, the greater the risk of scale, biological growth, and corrosion. The amount of blow-down is primarily regulated by measuring by the [[electrical conductivity]] of the circulating water. Biological growth, scaling, and corrosion can be prevented by chemicals (respectively, biocide, sulfuric acid, corrosion inhibitor). On the other hand, the only practical way to decrease the electrical conductivity is by increasing the amount of blow-down discharge and subsequently increasing the amount of clean make-up water.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Zero bleed for cooling towers|Zero}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Zero bleed for cooling towers|Zero}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Zero bleed for cooling towers''', also called '''zero blow-down for cooling towers''', is a process for significantly reducing the need for bleeding [[water]] with residual [[solid]]s from the system by enabling the water to hold more solids in solution.<ref name=WilliamHClark1997 >{{citation | author=William H Clark | year=1997 | title=Retrofitting for energy conservation | publisher=McGraw-Hill Professional | isbn=978-0-07-011920-8 | page=66 }}</ref><ref name=InstituteofIndustrialEngineers1981-1982 >{{citation | author=Institute of Industrial Engineers 1981– | year=1982 | title=Proceedings, Volume 1982 | publisher=Institute of Industrial Engineers/American Institute of Industrial Engineers | page=101 }}</ref><ref name=Mathie1998 >{{citation | last=Mathie | first=Alton J. | year=1998 | title=Chemical treatment for cooling water | publisher=Fairmont Press | isbn=978-0-88173-253-5 | page=86 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Zero bleed for cooling towers''', also called '''zero blow-down for cooling towers''', is a process for significantly reducing the need for bleeding [[water]] with residual [[solid]]s from the system by enabling the water to hold more solids in solution.<ref name=WilliamHClark1997 >{{citation | author=William H Clark | year=1997 | title=Retrofitting for energy conservation | publisher=McGraw-Hill Professional | isbn=978-0-07-011920-8 | page=66 }}</ref><ref name=InstituteofIndustrialEngineers1981-1982 >{{citation | author=Institute of Industrial Engineers 1981– | year=1982 | title=Proceedings, Volume 1982 | publisher=Institute of Industrial Engineers/American Institute of Industrial Engineers | page=101 }}</ref><ref name=Mathie1998 >{{citation | last=Mathie | first=Alton J. | year=1998 | title=Chemical treatment for cooling water | publisher=Fairmont Press | isbn=978-0-88173-253-5 | page=86 }}</ref></div></td>
</tr>
</table>Stephan Leedshttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1248731198&oldid=prevStephan Leeds: /* Terminology */ improper line wrap × 15; spaced em dash × 152024-10-01T04:40:12Z<p><span class="autocomment">Terminology: </span> improper line wrap × 15; spaced em dash × 15</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:40, 1 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 285:</td>
<td colspan="2" class="diff-lineno">Line 285:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Windage|Drift}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Windage|Drift}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Windage''' or '''Drift'''<del style="font-weight: bold; text-decoration: none;"> — </del>Water droplets that are carried out of the cooling tower with the exhaust air. Drift droplets have the same concentration of impurities as the water entering the tower. The drift rate is typically reduced by employing baffle-like devices, called drift eliminators, through which the air must travel after leaving the fill and spray zones of the tower. Drift can also be reduced by using warmer entering cooling tower temperatures.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Windage''' or '''Drift'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Water droplets that are carried out of the cooling tower with the exhaust air. Drift droplets have the same concentration of impurities as the water entering the tower. The drift rate is typically reduced by employing baffle-like devices, called drift eliminators, through which the air must travel after leaving the fill and spray zones of the tower. Drift can also be reduced by using warmer entering cooling tower temperatures.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Blow-out}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Blow-out}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Blow-out'''<del style="font-weight: bold; text-decoration: none;"> — </del>Water droplets blown out of the cooling tower by wind, generally at the air inlet openings. Water may also be lost, in the absence of wind, through splashing or misting. Devices such as wind screens, louvers, splash deflectors and water diverters are used to limit these losses.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Blow-out'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Water droplets blown out of the cooling tower by wind, generally at the air inlet openings. Water may also be lost, in the absence of wind, through splashing or misting. Devices such as wind screens, louvers, splash deflectors and water diverters are used to limit these losses.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Plume}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Plume}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Plume'''<del style="font-weight: bold; text-decoration: none;"> — </del>The stream of saturated exhaust air leaving the cooling tower. The plume is visible when water vapor it contains condenses in contact with cooler ambient air, like the saturated air in one's breath fogs on a cold day. Under certain conditions, a cooling tower plume may present fogging or icing hazards to its surroundings. Note that the water evaporated in the cooling process is "pure" water, in contrast to the very small percentage of drift droplets or water blown out of the air inlets.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Plume'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>The stream of saturated exhaust air leaving the cooling tower. The plume is visible when water vapor it contains condenses in contact with cooler ambient air, like the saturated air in one's breath fogs on a cold day. Under certain conditions, a cooling tower plume may present fogging or icing hazards to its surroundings. Note that the water evaporated in the cooling process is "pure" water, in contrast to the very small percentage of drift droplets or water blown out of the air inlets.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Draw-off|Blow-down}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Draw-off|Blow-down}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Draw-off''' or '''blow-down'''<del style="font-weight: bold; text-decoration: none;"> — </del>The portion of the circulating water flow that is removed (usually discharged to a drain) in order to maintain the amount of [[Total Dissolved Solids]] (TDS) and other impurities at an acceptably low level. Higher TDS concentration in solution may result from greater cooling tower efficiency. However the higher the TDS concentration, the greater the risk of scale, biological growth, and corrosion. The amount of blow-down is primarily regulated by measuring by the [[electrical conductivity]] of the circulating water. Biological growth, scaling, and corrosion can be prevented by chemicals (respectively, biocide, sulfuric acid, corrosion inhibitor). On the other hand, the only practical way to decrease the electrical conductivity is by increasing the amount of blow-down discharge and subsequently increasing the amount of clean make-up water.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Draw-off''' or '''blow-down'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>The portion of the circulating water flow that is removed (usually discharged to a drain) in order to maintain the amount of [[Total Dissolved Solids]] (TDS) and other impurities at an acceptably low level. Higher TDS concentration in solution may result from greater cooling tower efficiency. However the higher the TDS concentration, the greater the risk of scale, biological growth, and corrosion. The amount of blow-down is primarily regulated by measuring by the [[electrical conductivity]] of the circulating water. Biological growth, scaling, and corrosion can be prevented by chemicals (respectively, biocide, sulfuric acid, corrosion inhibitor). On the other hand, the only practical way to decrease the electrical conductivity is by increasing the amount of blow-down discharge and subsequently increasing the amount of clean make-up water.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Zero bleed for cooling towers|Zero}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Zero bleed for cooling towers|Zero}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Zero bleed for cooling towers''', also called '''zero blow-down for cooling towers''', is a process for significantly reducing the need for bleeding [[water]] with residual [[solid]]s from the system by enabling the water to hold more solids in solution.<ref name=WilliamHClark1997 >{{citation | author=William H Clark | year=1997 | title=Retrofitting for energy conservation | publisher=McGraw-Hill Professional | isbn=978-0-07-011920-8 | page=66 }}</ref><ref name=InstituteofIndustrialEngineers1981-1982 >{{citation | author=Institute of Industrial Engineers 1981– | year=1982 | title=Proceedings, Volume 1982 | publisher=Institute of Industrial Engineers/American Institute of Industrial Engineers | page=101 }}</ref><ref name=Mathie1998 >{{citation | last=Mathie | first=Alton J. | year=1998 | title=Chemical treatment for cooling water | publisher=Fairmont Press | isbn=978-0-88173-253-5 | page=86 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* '''Zero bleed for cooling towers''', also called '''zero blow-down for cooling towers''', is a process for significantly reducing the need for bleeding [[water]] with residual [[solid]]s from the system by enabling the water to hold more solids in solution.<ref name=WilliamHClark1997 >{{citation | author=William H Clark | year=1997 | title=Retrofitting for energy conservation | publisher=McGraw-Hill Professional | isbn=978-0-07-011920-8 | page=66 }}</ref><ref name=InstituteofIndustrialEngineers1981-1982 >{{citation | author=Institute of Industrial Engineers 1981– | year=1982 | title=Proceedings, Volume 1982 | publisher=Institute of Industrial Engineers/American Institute of Industrial Engineers | page=101 }}</ref><ref name=Mathie1998 >{{citation | last=Mathie | first=Alton J. | year=1998 | title=Chemical treatment for cooling water | publisher=Fairmont Press | isbn=978-0-88173-253-5 | page=86 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Make-up}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Make-up}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Make-up'''<del style="font-weight: bold; text-decoration: none;"> — </del>The water that must be added to the circulating water system in order to compensate for water losses such as evaporation, drift loss, blow-out, blow-down, etc.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Make-up'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>The water that must be added to the circulating water system in order to compensate for water losses such as evaporation, drift loss, blow-out, blow-down, etc.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Noise}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Noise}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Noise'''<del style="font-weight: bold; text-decoration: none;"> — </del>Sound energy emitted by a cooling tower and heard (recorded) at a given distance and direction. The sound is generated by the impact of falling water, by the movement of air by fans, the fan blades moving in the structure, vibration of the structure, and the motors, gearboxes or drive belts.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Noise'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Sound energy emitted by a cooling tower and heard (recorded) at a given distance and direction. The sound is generated by the impact of falling water, by the movement of air by fans, the fan blades moving in the structure, vibration of the structure, and the motors, gearboxes or drive belts.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Approach}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Approach}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Approach'''<del style="font-weight: bold; text-decoration: none;"> — </del>The approach is the difference in temperature between the cooled-water temperature and the entering-air [[Wet-bulb temperature|wet bulb temperature]] (twb). Since the cooling towers are based on the principles of evaporative cooling, the maximum cooling tower efficiency depends on the wet bulb temperature of the air. The wet-bulb temperature is a type of temperature measurement that reflects the physical properties of a system with a mixture of a gas and a vapor, usually air and water vapor</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Approach'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>The approach is the difference in temperature between the cooled-water temperature and the entering-air [[Wet-bulb temperature|wet bulb temperature]] (twb). Since the cooling towers are based on the principles of evaporative cooling, the maximum cooling tower efficiency depends on the wet bulb temperature of the air. The wet-bulb temperature is a type of temperature measurement that reflects the physical properties of a system with a mixture of a gas and a vapor, usually air and water vapor</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Range}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Range}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Range'''<del style="font-weight: bold; text-decoration: none;"> — </del>The range is the temperature difference between the warm water inlet and cooled water exit.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Range'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>The range is the temperature difference between the warm water inlet and cooled water exit.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Fill}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Fill}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Fill'''<del style="font-weight: bold; text-decoration: none;"> — </del>Inside the tower, fills are added to increase contact surface as well as contact time between air and water, to provide better heat transfer. The efficiency of the tower depends on the selection and amount of fill. There are two types of fills that may be used:</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Fill'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Inside the tower, fills are added to increase contact surface as well as contact time between air and water, to provide better heat transfer. The efficiency of the tower depends on the selection and amount of fill. There are two types of fills that may be used:</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>**'''Film type fill''' (causes water to spread into a thin film)</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>**'''Film type fill''' (causes water to spread into a thin film)</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>**'''Splash type fill''' (breaks up falling stream of water and interrupts its vertical progress)</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>**'''Splash type fill''' (breaks up falling stream of water and interrupts its vertical progress)</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Full-Flow Filtration|Full-Flow}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Full-Flow Filtration|Full-Flow}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Full-flow filtration'''<del style="font-weight: bold; text-decoration: none;"> — </del>Full-flow filtration continuously strains particulates out of the entire system flow. For example, in a 100-ton system, the flow rate would be roughly 300 gal/min. A filter would be selected to accommodate the entire 300 gal/min flow rate. In this case, the filter typically is installed after the cooling tower on the discharge side of the pump. While this is the ideal method of filtration, for higher flow systems it may be cost-prohibitive.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Full-flow filtration'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Full-flow filtration continuously strains particulates out of the entire system flow. For example, in a 100-ton system, the flow rate would be roughly 300 gal/min. A filter would be selected to accommodate the entire 300 gal/min flow rate. In this case, the filter typically is installed after the cooling tower on the discharge side of the pump. While this is the ideal method of filtration, for higher flow systems it may be cost-prohibitive.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Side-Stream Filtration|Side-Stream}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Side-Stream Filtration|Side-Stream}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Side-stream filtration'''<del style="font-weight: bold; text-decoration: none;"> — </del>Side-stream filtration, although popular and effective, does not provide complete protection. With side-stream filtration, a portion of the water is filtered continuously. This method works on the principle that continuous particle removal will keep the system clean. Manufacturers typically package side-stream filters on a skid, complete with a pump and controls. For high flow systems, this method is cost-effective. Properly sizing a side-stream filtration system is critical to obtain satisfactory filter performance, but there is some debate over how to properly size the side-stream system. Many engineers size the system to continuously filter the cooling tower basin water at a rate equivalent to 10% of the total circulation flow rate. For example, if the total flow of a system is 1,200 gal/min (a 400-ton system), a 120 gal/min side-stream system is specified.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Side-stream filtration'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Side-stream filtration, although popular and effective, does not provide complete protection. With side-stream filtration, a portion of the water is filtered continuously. This method works on the principle that continuous particle removal will keep the system clean. Manufacturers typically package side-stream filters on a skid, complete with a pump and controls. For high flow systems, this method is cost-effective. Properly sizing a side-stream filtration system is critical to obtain satisfactory filter performance, but there is some debate over how to properly size the side-stream system. Many engineers size the system to continuously filter the cooling tower basin water at a rate equivalent to 10% of the total circulation flow rate. For example, if the total flow of a system is 1,200 gal/min (a 400-ton system), a 120 gal/min side-stream system is specified.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Cycle of concentration|Cycle}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Cycle of concentration|Cycle}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Cycle of concentration'''<del style="font-weight: bold; text-decoration: none;"> — </del>Maximum allowed multiplier for the amount of miscellaneous substances in circulating water compared to the amount of those substances in make-up water.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Cycle of concentration'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Maximum allowed multiplier for the amount of miscellaneous substances in circulating water compared to the amount of those substances in make-up water.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Treated timber|Treated}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Treated timber|Treated}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Treated timber'''<del style="font-weight: bold; text-decoration: none;"> — </del>A structural material for cooling towers which was largely abandoned in the early 2000s. It is still used occasionally due to its low initial costs, in spite of its short life expectancy. The life of treated timber varies a lot, depending on the operating conditions of the tower, such as frequency of shutdowns, treatment of the circulating water, etc. Under proper working conditions, the estimated life of treated timber structural members is about 10 years.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Treated timber'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>A structural material for cooling towers which was largely abandoned in the early 2000s. It is still used occasionally due to its low initial costs, in spite of its short life expectancy. The life of treated timber varies a lot, depending on the operating conditions of the tower, such as frequency of shutdowns, treatment of the circulating water, etc. Under proper working conditions, the estimated life of treated timber structural members is about 10 years.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Leaching}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Leaching}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Leaching'''<del style="font-weight: bold; text-decoration: none;"> — </del>The loss of wood preservative chemicals by the washing action of the water flowing through a wood structure cooling tower.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Leaching'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>The loss of wood preservative chemicals by the washing action of the water flowing through a wood structure cooling tower.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Pultruded FRP|Pultruded}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{anchor |Pultruded FRP|Pultruded}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*'''Pultruded FRP'''<del style="font-weight: bold; text-decoration: none;"> — </del>A common structural material for smaller cooling towers, [[fibre-reinforced plastic]] (FRP) is known for its high corrosion-resistance capabilities. Pultruded FRP is produced using [[pultrusion]] technology, and has become the most common structural material for small cooling towers. It offers lower costs and requires less maintenance compared to reinforced concrete, which is still in use for large structures.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*'''Pultruded FRP'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>A common structural material for smaller cooling towers, [[fibre-reinforced plastic]] (FRP) is known for its high corrosion-resistance capabilities. Pultruded FRP is produced using [[pultrusion]] technology, and has become the most common structural material for small cooling towers. It offers lower costs and requires less maintenance compared to reinforced concrete, which is still in use for large structures.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Fog production==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Fog production==</div></td>
</tr>
</table>Stephan Leedshttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1248731135&oldid=prevStephan Leeds: /* Air flow generation methods */ improper line wrap; spaced em dash2024-10-01T04:39:39Z<p><span class="autocomment">Air flow generation methods: </span> improper line wrap; spaced em dash</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:39, 1 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 95:</td>
<td colspan="2" class="diff-lineno">Line 95:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Stairway to nowhere^ - geograph.org.uk - 455003.jpg|thumb|Access stairs at the base of a massive hyperboloid cooling tower give a sense of its scale (UK).]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[File:Stairway to nowhere^ - geograph.org.uk - 455003.jpg|thumb|Access stairs at the base of a massive hyperboloid cooling tower give a sense of its scale (UK).]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>With respect to drawing air through the tower, there are three types of cooling towers:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>With respect to drawing air through the tower, there are three types of cooling towers:</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''[[Natural draught|Natural draft]]'''<del style="font-weight: bold; text-decoration: none;"> — </del>Utilizes buoyancy via a tall chimney. Warm, moist air ''naturally'' rises due to the density differential compared to the dry, cooler outside air. Warm [[Lighter than air#Water vapour|moist air]] is less dense than drier air at the same pressure. This moist air buoyancy produces an upwards current of air through the tower.{{Multiple image</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''[[Natural draught|Natural draft]]'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Utilizes buoyancy via a tall chimney. Warm, moist air ''naturally'' rises due to the density differential compared to the dry, cooler outside air. Warm [[Lighter than air#Water vapour|moist air]] is less dense than drier air at the same pressure. This moist air buoyancy produces an upwards current of air through the tower.{{Multiple image</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| direction = vertical</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| direction = vertical</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| total_width = 220</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| total_width = 220</div></td>
</tr>
</table>Stephan Leedshttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1248731062&oldid=prevStephan Leeds: /* Air flow generation methods */ improper line wrap × 4; spaced em dash × 42024-10-01T04:38:57Z<p><span class="autocomment">Air flow generation methods: </span> improper line wrap × 4; spaced em dash × 4</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:38, 1 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 102:</td>
<td colspan="2" class="diff-lineno">Line 102:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| caption2 = Inside views from a natural draft cooling tower</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>| caption2 = Inside views from a natural draft cooling tower</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''Mechanical draft'''<del style="font-weight: bold; text-decoration: none;"> — </del>Uses power-driven fan motors to force or draw air through the tower.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''Mechanical draft'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>Uses power-driven fan motors to force or draw air through the tower.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** '''Induced draft'''<del style="font-weight: bold; text-decoration: none;"> — </del>A mechanical draft tower with a fan at the discharge (at the top) which pulls air up through the tower. The fan ''induces'' hot moist air out the discharge. This produces low entering and high exiting air velocities, reducing the possibility of ''recirculation'' in which discharged air flows back into the air intake. This fan/fin arrangement is also known as ''draw-through''. </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** '''Induced draft'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>A mechanical draft tower with a fan at the discharge (at the top) which pulls air up through the tower. The fan ''induces'' hot moist air out the discharge. This produces low entering and high exiting air velocities, reducing the possibility of ''recirculation'' in which discharged air flows back into the air intake. This fan/fin arrangement is also known as ''draw-through''. </div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>** '''Forced draft'''<del style="font-weight: bold; text-decoration: none;"> — </del>A mechanical draft tower with a blower type fan at the intake. The fan ''forces'' air into the tower, creating high entering and low exiting air velocities. The low exiting velocity is much more susceptible to recirculation. With the fan on the air intake, the fan is more susceptible to complications due to freezing conditions. Another disadvantage is that a forced draft design typically requires more motor horsepower than an equivalent induced draft design. The benefit of the forced draft design is its ability to work with high [[static pressure]]. Such setups can be installed in more-confined spaces and even in some indoor situations. This fan/fin geometry is also known as ''blow-through''.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>** '''Forced draft'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>A mechanical draft tower with a blower type fan at the intake. The fan ''forces'' air into the tower, creating high entering and low exiting air velocities. The low exiting velocity is much more susceptible to recirculation. With the fan on the air intake, the fan is more susceptible to complications due to freezing conditions. Another disadvantage is that a forced draft design typically requires more motor horsepower than an equivalent induced draft design. The benefit of the forced draft design is its ability to work with high [[static pressure]]. Such setups can be installed in more-confined spaces and even in some indoor situations. This fan/fin geometry is also known as ''blow-through''.</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* '''Fan assisted natural draft'''<del style="font-weight: bold; text-decoration: none;"> — </del>A hybrid type that appears like a natural draft setup, though airflow is assisted by a fan.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* '''Fan assisted natural draft'''<ins style="font-weight: bold; text-decoration: none;">{{dash}}</ins>A hybrid type that appears like a natural draft setup, though airflow is assisted by a fan.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Hyperboloid cooling tower===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>===Hyperboloid cooling tower===</div></td>
</tr>
</table>Stephan Leedshttps://en.wikipedia.org/w/index.php?title=Cooling_tower&diff=1248730618&oldid=prevStephan Leeds: /* Field-erected type */ hyphen missing from compound modifier2024-10-01T04:35:18Z<p><span class="autocomment">Field-erected type: </span> hyphen missing from compound modifier</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 04:35, 1 October 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 74:</td>
<td colspan="2" class="diff-lineno">Line 74:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Field-erected type ===</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>=== Field-erected type ===</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Facilities such as power plants, steel processing plants, petroleum refineries, or petrochemical plants usually install field<del style="font-weight: bold; text-decoration: none;"> </del>erected type cooling towers due to their greater capacity for heat rejection. Field-erected towers are usually much larger in size compared to the package type cooling towers.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Facilities such as power plants, steel processing plants, petroleum refineries, or petrochemical plants usually install field<ins style="font-weight: bold; text-decoration: none;">-</ins>erected type cooling towers due to their greater capacity for heat rejection. Field-erected towers are usually much larger in size compared to the package type cooling towers.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A typical field-erected cooling tower has a [[Pultrusion|pultruded]] [[fiber-reinforced plastic]] (FRP) structure, FRP [[Cladding (construction)|cladding]], a mechanical unit for [[air draft]], and a drift eliminator.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A typical field-erected cooling tower has a [[Pultrusion|pultruded]] [[fiber-reinforced plastic]] (FRP) structure, FRP [[Cladding (construction)|cladding]], a mechanical unit for [[air draft]], and a drift eliminator.</div></td>
</tr>
</table>Stephan Leeds