https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=RIG-I
RIG-I - Revision history
2025-01-08T16:40:19Z
Revision history for this page on the wiki
MediaWiki 1.44.0-wmf.8
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1242594820&oldid=prev
167.98.155.165: /* Further reading */ Category
2024-08-27T16:57:08Z
<p><span class="autocomment">Further reading: </span> Category</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:57, 27 August 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 60:</td>
<td colspan="2" class="diff-lineno">Line 60:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note: RARRES3 (Gene ID: 5920) and DDX58 (Gene ID: 23586) share the RIG1/RIG-1 alias in common. RIG1 is a widely used alternative name for DExD/H-box helicase 58 (DDX58), which can be confused with the retinoic acid receptor responder 3 (RARRES3) gene, since they share the same alias. [22 Jan 2019]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Note: RARRES3 (Gene ID: 5920) and DDX58 (Gene ID: 23586) share the RIG1/RIG-1 alias in common. RIG1 is a widely used alternative name for DExD/H-box helicase 58 (DDX58), which can be confused with the retinoic acid receptor responder 3 (RARRES3) gene, since they share the same alias. [22 Jan 2019]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Helicases]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:RIG-I-like receptors]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:RIG-I-like receptors]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Intracellular receptors]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>[[Category:Intracellular receptors]]</div></td>
</tr>
</table>
167.98.155.165
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1225439449&oldid=prev
Innatestability: /* Identification and naming */
2024-05-24T13:19:53Z
<p><span class="autocomment">Identification and naming</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 13:19, 24 May 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 28:</td>
<td colspan="2" class="diff-lineno">Line 28:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Usually, RIG-I recognizes foreign RNA. However, it can sometimes recognize "self" RNAs. RIG-I has been shown to enable [[breast cancer]] cells (BrCa) to resist treatments and grow because of an IFN response to noncoding RNA. In contrast, RIG-I in other types of cancer, such as acute [[myeloid leukemia]] and [[hepatocellular carcinoma]], can act as a tumor suppressor.<ref name="Xu_2018" /> If cancer causing viruses infect a cell, however, RIG-I can lead to cell death. Cell death can occur via [[apoptosis]] via the [[Caspase 3|caspase-3]] pathway, or through IFN-dependent T cells and [[natural killer cell]]s.<ref>{{cite journal | vauthors = Żeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, Mozer-Lisewska I | title = Significance and Role of Pattern Recognition Receptors in Malignancy | journal = Archivum Immunologiae et Therapiae Experimentalis | volume = 67 | issue = 3 | pages = 133–141 | date = June 2019 | pmid = 30976817 | pmc = 6509067 | doi = 10.1007/s00005-019-00540-x }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Usually, RIG-I recognizes foreign RNA. However, it can sometimes recognize "self" RNAs. RIG-I has been shown to enable [[breast cancer]] cells (BrCa) to resist treatments and grow because of an IFN response to noncoding RNA. In contrast, RIG-I in other types of cancer, such as acute [[myeloid leukemia]] and [[hepatocellular carcinoma]], can act as a tumor suppressor.<ref name="Xu_2018" /> If cancer causing viruses infect a cell, however, RIG-I can lead to cell death. Cell death can occur via [[apoptosis]] via the [[Caspase 3|caspase-3]] pathway, or through IFN-dependent T cells and [[natural killer cell]]s.<ref>{{cite journal | vauthors = Żeromski J, Kaczmarek M, Boruczkowski M, Kierepa A, Kowala-Piaskowska A, Mozer-Lisewska I | title = Significance and Role of Pattern Recognition Receptors in Malignancy | journal = Archivum Immunologiae et Therapiae Experimentalis | volume = 67 | issue = 3 | pages = 133–141 | date = June 2019 | pmid = 30976817 | pmc = 6509067 | doi = 10.1007/s00005-019-00540-x }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>== Identification and <del style="font-weight: bold; text-decoration: none;">naming</del> ==</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>== Identification and <ins style="font-weight: bold; text-decoration: none;">Naming</ins> ==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In 2000, RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | doi-access = free }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization on RIG-I.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>In 2000, RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | doi-access = free }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization on RIG-I.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
</table>
Innatestability
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1216845100&oldid=prev
Innatestability: /* Identification and naming */
2024-04-02T09:22:07Z
<p><span class="autocomment">Identification and naming</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:22, 2 April 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Identification and naming ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Identification and naming ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | doi-access = free }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization on RIG-I.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div><ins style="font-weight: bold; text-decoration: none;">In 2000, </ins>RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | doi-access = free }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization on RIG-I.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>
Innatestability
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1208113633&oldid=prev
Innatestability: removed "blunt 5' end" which was confusing and reads like 5' ends without phosphate could be recognized by RIG-I. Reference 7 (Goubau et al.) show that CIP treatment substantially reduces RIG-I recognition. Similarly, 5' diP and triP activate RIG-I, while 5' monoP does not.
2024-02-16T14:31:36Z
<p>removed "blunt 5' end" which was confusing and reads like 5' ends without phosphate could be recognized by RIG-I. Reference 7 (Goubau et al.) show that CIP treatment substantially reduces RIG-I recognition. Similarly, 5' diP and triP activate RIG-I, while 5' monoP does not.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:31, 16 February 2024</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''RIG-I''' ('''retinoic acid-inducible gene I''') is a [[cytosol]]ic [[pattern recognition receptor]] (PRR) that can mediate induction of a [[Interferon type I|type-I interferon]] (IFN1) response.<ref name="Kell_2015">{{cite journal | vauthors = Kell AM, Gale M | title = RIG-I in RNA virus recognition | journal = Virology | volume = 479-480 | pages = 110–121 | date = May 2015 | pmid = 25749629 | pmc = 4424084 | doi = 10.1016/j.virol.2015.02.017 }}</ref> RIG-I is an essential molecule in the [[innate immune system]] for recognizing cells that have been infected with a virus. These viruses can include [[West Nile virus]], [[Japanese encephalitis|Japanese Encephalitis virus]], [[influenza A]], [[Sendai virus]], [[flavivirus]], and [[coronavirus]]es.<ref name="Kell_2015" /><ref name="Solis_2011">{{cite journal | vauthors = Solis M, Nakhaei P, Jalalirad M, Lacoste J, Douville R, Arguello M, Zhao T, Laughrea M, Wainberg MA, Hiscott J | display-authors = 6 | title = RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I | journal = Journal of Virology | volume = 85 | issue = 3 | pages = 1224–1236 | date = February 2011 | pmid = 21084468 | pmc = 3020501 | doi = 10.1128/JVI.01635-10 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>'''RIG-I''' ('''retinoic acid-inducible gene I''') is a [[cytosol]]ic [[pattern recognition receptor]] (PRR) that can mediate induction of a [[Interferon type I|type-I interferon]] (IFN1) response.<ref name="Kell_2015">{{cite journal | vauthors = Kell AM, Gale M | title = RIG-I in RNA virus recognition | journal = Virology | volume = 479-480 | pages = 110–121 | date = May 2015 | pmid = 25749629 | pmc = 4424084 | doi = 10.1016/j.virol.2015.02.017 }}</ref> RIG-I is an essential molecule in the [[innate immune system]] for recognizing cells that have been infected with a virus. These viruses can include [[West Nile virus]], [[Japanese encephalitis|Japanese Encephalitis virus]], [[influenza A]], [[Sendai virus]], [[flavivirus]], and [[coronavirus]]es.<ref name="Kell_2015" /><ref name="Solis_2011">{{cite journal | vauthors = Solis M, Nakhaei P, Jalalirad M, Lacoste J, Douville R, Arguello M, Zhao T, Laughrea M, Wainberg MA, Hiscott J | display-authors = 6 | title = RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I | journal = Journal of Virology | volume = 85 | issue = 3 | pages = 1224–1236 | date = February 2011 | pmid = 21084468 | pmc = 3020501 | doi = 10.1128/JVI.01635-10 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RIG-I is an ATP-dependent [[DExD/H box proteins|DExD/H box]] [[RNA Helicase|RNA helicase]] that is activated by immunostimulatory RNAs from viruses as well as RNAs of other origins. RIG-I recognizes short [[double-stranded RNA]] (dsRNA) in the cytosol with a<del style="font-weight: bold; text-decoration: none;"> blunt 5' end,</del> 5' tri- or di-phosphate end or a [[Five-prime cap|5' 7-methyl guanosine (m7G) cap]] (cap-0), but not RNA with a 5' m7G cap having a ribose 2′-O-methyl modification (cap-1).<ref>{{cite journal | vauthors = Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C | display-authors = 6 | title = Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates | journal = Nature | volume = 514 | issue = 7522 | pages = 372–375 | date = October 2014 | pmid = 25119032 | pmc = 4201573 | doi = 10.1038/nature13590 | bibcode = 2014Natur.514..372G }}</ref><ref>{{cite journal | vauthors = Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J | display-authors = 6 | title = Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 113 | issue = 3 | pages = 596–601 | date = January 2016 | pmid = 26733676 | doi = 10.1073/pnas.1515152113 | pmc = 4725518 | bibcode = 2016PNAS..113..596D | doi-access = free }}</ref> These are often generated during a viral infection but can also be host-derived.<ref name="Kell_2015" /><ref name="Brisse_2019">{{cite journal | vauthors = Brisse M, Ly H | title = Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5 | language = English | journal = Frontiers in Immunology | volume = 10 | pages = 1586 | date = 2019 | pmid = 31379819 | pmc = 6652118 | doi = 10.3389/fimmu.2019.01586 | doi-access = free }}</ref><ref name="Xu_2018">{{cite journal | vauthors = Xu XX, Wan H, Nie L, Shao T, Xiang LX, Shao JZ | title = RIG-I: a multifunctional protein beyond a pattern recognition receptor | journal = Protein & Cell | volume = 9 | issue = 3 | pages = 246–253 | date = March 2018 | pmid = 28593618 | pmc = 5829270 | doi = 10.1007/s13238-017-0431-5 }}</ref><ref>{{cite journal | vauthors = Chiang JJ, Sparrer KM, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner KP, Gack MU | display-authors = 6 | title = Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity | journal = Nature Immunology | volume = 19 | issue = 1 | pages = 53–62 | date = January 2018 | pmid = 29180807 | pmc = 5815369 | doi = 10.1038/s41590-017-0005-y }}</ref><ref>{{cite journal | vauthors = Zhao Y, Ye X, Dunker W, Song Y, Karijolich J | title = RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection | journal = Nature Communications | volume = 9 | issue = 1 | pages = 4841 | date = November 2018 | pmid = 30451863 | pmc = 6242832 | doi = 10.1038/s41467-018-07314-7 | bibcode = 2018NatCo...9.4841Z }}</ref> Once activated by the dsRNA, the N-terminus [[CARD domain|caspase activation and recruitment domains]] (CARDs) migrate and bind with CARDs attached to mitochondrial antiviral signaling protein ([[MAVS (gene)|MAVS]]) to activate the signaling pathway for IFN1.<ref name="Kell_2015" /><ref name="Brisse_2019" /></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RIG-I is an ATP-dependent [[DExD/H box proteins|DExD/H box]] [[RNA Helicase|RNA helicase]] that is activated by immunostimulatory RNAs from viruses as well as RNAs of other origins. RIG-I recognizes short [[double-stranded RNA]] (dsRNA) in the cytosol with a 5' tri- or di-phosphate end or a [[Five-prime cap|5' 7-methyl guanosine (m7G) cap]] (cap-0), but not RNA with a 5' m7G cap having a ribose 2′-O-methyl modification (cap-1).<ref>{{cite journal | vauthors = Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C | display-authors = 6 | title = Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates | journal = Nature | volume = 514 | issue = 7522 | pages = 372–375 | date = October 2014 | pmid = 25119032 | pmc = 4201573 | doi = 10.1038/nature13590 | bibcode = 2014Natur.514..372G }}</ref><ref>{{cite journal | vauthors = Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J | display-authors = 6 | title = Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 113 | issue = 3 | pages = 596–601 | date = January 2016 | pmid = 26733676 | doi = 10.1073/pnas.1515152113 | pmc = 4725518 | bibcode = 2016PNAS..113..596D | doi-access = free }}</ref> These are often generated during a viral infection but can also be host-derived.<ref name="Kell_2015" /><ref name="Brisse_2019">{{cite journal | vauthors = Brisse M, Ly H | title = Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5 | language = English | journal = Frontiers in Immunology | volume = 10 | pages = 1586 | date = 2019 | pmid = 31379819 | pmc = 6652118 | doi = 10.3389/fimmu.2019.01586 | doi-access = free }}</ref><ref name="Xu_2018">{{cite journal | vauthors = Xu XX, Wan H, Nie L, Shao T, Xiang LX, Shao JZ | title = RIG-I: a multifunctional protein beyond a pattern recognition receptor | journal = Protein & Cell | volume = 9 | issue = 3 | pages = 246–253 | date = March 2018 | pmid = 28593618 | pmc = 5829270 | doi = 10.1007/s13238-017-0431-5 }}</ref><ref>{{cite journal | vauthors = Chiang JJ, Sparrer KM, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner KP, Gack MU | display-authors = 6 | title = Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity | journal = Nature Immunology | volume = 19 | issue = 1 | pages = 53–62 | date = January 2018 | pmid = 29180807 | pmc = 5815369 | doi = 10.1038/s41590-017-0005-y }}</ref><ref>{{cite journal | vauthors = Zhao Y, Ye X, Dunker W, Song Y, Karijolich J | title = RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection | journal = Nature Communications | volume = 9 | issue = 1 | pages = 4841 | date = November 2018 | pmid = 30451863 | pmc = 6242832 | doi = 10.1038/s41467-018-07314-7 | bibcode = 2018NatCo...9.4841Z }}</ref> Once activated by the dsRNA, the N-terminus [[CARD domain|caspase activation and recruitment domains]] (CARDs) migrate and bind with CARDs attached to mitochondrial antiviral signaling protein ([[MAVS (gene)|MAVS]]) to activate the signaling pathway for IFN1.<ref name="Kell_2015" /><ref name="Brisse_2019" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Type-I IFNs have three main functions: to limit the virus from spreading to nearby cells, promote an innate immune response, including inflammatory responses, and help activate the [[adaptive immune system]].<ref name="Ivashkiv_2014">{{cite journal | vauthors = Ivashkiv LB, Donlin LT | title = Regulation of type I interferon responses | journal = Nature Reviews. Immunology | volume = 14 | issue = 1 | pages = 36–49 | date = January 2014 | pmid = 24362405 | pmc = 4084561 | doi = 10.1038/nri3581 }}</ref> Other studies have shown that in different microenvironments, such as in cancerous cells, RIG-I has more functions other than viral recognition.<ref name="Xu_2018" /> RIG-I orthologs are found in mammals, geese, ducks, some fish, and some reptiles.<ref name="Brisse_2019" /> RIG-I is in most cells, including various innate immune system cells, and is usually in an inactive state.<ref name="Kell_2015" /><ref name="Brisse_2019" /> [[Knockout mouse|Knockout mice]] that have been designed to have a deleted or non-functioning RIG-I gene are not healthy and typically die embryonically. If they survive, the mice have serious developmental dysfunction.<ref name="Brisse_2019" /> The stimulator of interferon genes [[STING]] antagonizes RIG-I by binding its N-terminus, probably as to avoid overactivation of RIG-I signaling and the associated [[autoimmunity]].<ref>{{cite journal | vauthors = Yu P, Miao Z, Li Y, Bansal R, Peppelenbosch MP, Pan Q | title = cGAS-STING effectively restricts murine norovirus infection but antagonizes the antiviral action of N-terminus of RIG-I in mouse macrophages | journal = Gut Microbes | volume = 13 | issue = 1 | pages = 1959839 | date = January 2021 | pmid = 34347572 | pmc = 8344765 | doi = 10.1080/19490976.2021.1959839 }}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Type-I IFNs have three main functions: to limit the virus from spreading to nearby cells, promote an innate immune response, including inflammatory responses, and help activate the [[adaptive immune system]].<ref name="Ivashkiv_2014">{{cite journal | vauthors = Ivashkiv LB, Donlin LT | title = Regulation of type I interferon responses | journal = Nature Reviews. Immunology | volume = 14 | issue = 1 | pages = 36–49 | date = January 2014 | pmid = 24362405 | pmc = 4084561 | doi = 10.1038/nri3581 }}</ref> Other studies have shown that in different microenvironments, such as in cancerous cells, RIG-I has more functions other than viral recognition.<ref name="Xu_2018" /> RIG-I orthologs are found in mammals, geese, ducks, some fish, and some reptiles.<ref name="Brisse_2019" /> RIG-I is in most cells, including various innate immune system cells, and is usually in an inactive state.<ref name="Kell_2015" /><ref name="Brisse_2019" /> [[Knockout mouse|Knockout mice]] that have been designed to have a deleted or non-functioning RIG-I gene are not healthy and typically die embryonically. If they survive, the mice have serious developmental dysfunction.<ref name="Brisse_2019" /> The stimulator of interferon genes [[STING]] antagonizes RIG-I by binding its N-terminus, probably as to avoid overactivation of RIG-I signaling and the associated [[autoimmunity]].<ref>{{cite journal | vauthors = Yu P, Miao Z, Li Y, Bansal R, Peppelenbosch MP, Pan Q | title = cGAS-STING effectively restricts murine norovirus infection but antagonizes the antiviral action of N-terminus of RIG-I in mouse macrophages | journal = Gut Microbes | volume = 13 | issue = 1 | pages = 1959839 | date = January 2021 | pmid = 34347572 | pmc = 8344765 | doi = 10.1080/19490976.2021.1959839 }}</ref></div></td>
</tr>
</table>
Innatestability
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1185297323&oldid=prev
Citation bot: Removed proxy/dead URL that duplicated identifier. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 117/1025
2023-11-15T21:12:34Z
<p>Removed proxy/dead URL that duplicated identifier. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Whoop whoop pull up | #UCB_webform 117/1025</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 21:12, 15 November 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Identification and naming ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Identification and naming ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397<del style="font-weight: bold; text-decoration: none;"> | url = https://pubmed.ncbi.nlm.nih.gov/10942397/</del> | doi-access = free }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization on RIG-I.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | doi-access = free }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization on RIG-I.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>
Citation bot
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1170054466&oldid=prev
OAbot: Open access bot: doi added to citation with #oabot.
2023-08-12T23:13:40Z
<p><a href="/wiki/Wikipedia:OABOT" title="Wikipedia:OABOT">Open access bot</a>: doi added to citation with #oabot.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 23:13, 12 August 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Identification and naming ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Identification and naming ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | url = https://pubmed.ncbi.nlm.nih.gov/10942397/ }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization on RIG-I.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | url = https://pubmed.ncbi.nlm.nih.gov/10942397/<ins style="font-weight: bold; text-decoration: none;"> | doi-access = free</ins> }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization on RIG-I.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>
OAbot
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1168898174&oldid=prev
JCW-CleanerBot: clean up, removed: = Biochimie et Biologie Cellulaire
2023-08-05T19:30:39Z
<p>clean up, removed: = Biochimie et Biologie Cellulaire</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:30, 5 August 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Mammalian protein found in humans}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Short description|Mammalian protein found in humans}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Infobox gene}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{Infobox gene}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>'''RIG-I''' ('''retinoic acid-inducible gene I''') is a [[cytosol]]ic [[pattern recognition receptor]] (PRR) that can mediate induction of a [[Interferon type I|type-I interferon]] (IFN1) response.<ref name="Kell_2015">{{cite journal | vauthors = Kell AM, Gale M | title = RIG-I in RNA virus recognition | journal = Virology | volume = 479-480 | pages = 110–121 | date = May 2015 | pmid = 25749629 | pmc = 4424084 | doi = 10.1016/j.virol.2015.02.017 }}</ref> RIG-I is an essential molecule in the [[innate immune system]] for recognizing cells that have been infected with a virus. These viruses can include [[West Nile virus]], [[Japanese encephalitis|Japanese Encephalitis virus]], [[influenza A]], [[Sendai virus]], [[flavivirus]], and [[coronavirus]]es.<ref name="Kell_2015" /><ref name="Solis_2011">{{cite journal | vauthors = Solis M, Nakhaei P, Jalalirad M, Lacoste J, Douville R, Arguello M, Zhao T, Laughrea M, Wainberg MA, Hiscott J | display-authors = 6 | title = RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I | journal = Journal of Virology | volume = 85 | issue = 3 | pages = 1224–1236 | date = February 2011 | pmid = 21084468 | pmc = 3020501 | doi = 10.1128/JVI.01635-10 }}</ref><del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>'''RIG-I''' ('''retinoic acid-inducible gene I''') is a [[cytosol]]ic [[pattern recognition receptor]] (PRR) that can mediate induction of a [[Interferon type I|type-I interferon]] (IFN1) response.<ref name="Kell_2015">{{cite journal | vauthors = Kell AM, Gale M | title = RIG-I in RNA virus recognition | journal = Virology | volume = 479-480 | pages = 110–121 | date = May 2015 | pmid = 25749629 | pmc = 4424084 | doi = 10.1016/j.virol.2015.02.017 }}</ref> RIG-I is an essential molecule in the [[innate immune system]] for recognizing cells that have been infected with a virus. These viruses can include [[West Nile virus]], [[Japanese encephalitis|Japanese Encephalitis virus]], [[influenza A]], [[Sendai virus]], [[flavivirus]], and [[coronavirus]]es.<ref name="Kell_2015" /><ref name="Solis_2011">{{cite journal | vauthors = Solis M, Nakhaei P, Jalalirad M, Lacoste J, Douville R, Arguello M, Zhao T, Laughrea M, Wainberg MA, Hiscott J | display-authors = 6 | title = RIG-I-mediated antiviral signaling is inhibited in HIV-1 infection by a protease-mediated sequestration of RIG-I | journal = Journal of Virology | volume = 85 | issue = 3 | pages = 1224–1236 | date = February 2011 | pmid = 21084468 | pmc = 3020501 | doi = 10.1128/JVI.01635-10 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RIG-I is an ATP-dependent [[DExD/H box proteins|DExD/H box]] [[RNA Helicase|RNA helicase]] that is activated by immunostimulatory RNAs from viruses as well as RNAs of other origins. RIG-I recognizes short [[double-stranded RNA]] (dsRNA) in the cytosol with a blunt 5' end, 5' tri- or di-phosphate end or a [[Five-prime cap|5' 7-methyl guanosine (m7G) cap]] (cap-0), but not RNA with a 5' m7G cap having a ribose 2′-O-methyl modification (cap-1)<del style="font-weight: bold; text-decoration: none;"> </del><ref>{{cite journal | vauthors = Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C | display-authors = 6 | title = Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates | journal = Nature | volume = 514 | issue = 7522 | pages = 372–375 | date = October 2014 | pmid = 25119032 | pmc = 4201573 | doi = 10.1038/nature13590 | bibcode = 2014Natur.514..372G }}</ref><ref>{{cite journal | vauthors = Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J | display-authors = 6 | title = Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 113 | issue = 3 | pages = 596–601 | date = January 2016 | pmid = 26733676 | doi = 10.1073/pnas.1515152113 | pmc = 4725518 | bibcode = 2016PNAS..113..596D | doi-access = free }}</ref><del style="font-weight: bold; text-decoration: none;">.</del> These are often generated during a viral infection but can also be host-derived<del style="font-weight: bold; text-decoration: none;"> </del><ref name="Kell_2015" /><ref name="Brisse_2019">{{cite journal | vauthors = Brisse M, Ly H | title = Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5 | language = English | journal = Frontiers in Immunology | volume = 10 | pages = 1586 | date = 2019 | pmid = 31379819 | pmc = 6652118 | doi = 10.3389/fimmu.2019.01586 | doi-access = free }}</ref><ref name="Xu_2018">{{cite journal | vauthors = Xu XX, Wan H, Nie L, Shao T, Xiang LX, Shao JZ | title = RIG-I: a multifunctional protein beyond a pattern recognition receptor | journal = Protein & Cell | volume = 9 | issue = 3 | pages = 246–253 | date = March 2018 | pmid = 28593618 | pmc = 5829270 | doi = 10.1007/s13238-017-0431-5 }}</ref><ref>{{cite journal | vauthors = Chiang JJ, Sparrer KM, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner KP, Gack MU | display-authors = 6 | title = Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity | journal = Nature Immunology | volume = 19 | issue = 1 | pages = 53–62 | date = January 2018 | pmid = 29180807 | pmc = 5815369 | doi = 10.1038/s41590-017-0005-y }}</ref><ref>{{cite journal | vauthors = Zhao Y, Ye X, Dunker W, Song Y, Karijolich J | title = RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection | journal = Nature Communications | volume = 9 | issue = 1 | pages = 4841 | date = November 2018 | pmid = 30451863 | pmc = 6242832 | doi = 10.1038/s41467-018-07314-7 | bibcode = 2018NatCo...9.4841Z }}</ref><del style="font-weight: bold; text-decoration: none;">.</del> Once activated by the dsRNA, the N-terminus [[CARD domain|caspase activation and recruitment domains]] (CARDs) migrate and bind with CARDs attached to mitochondrial antiviral signaling protein ([[MAVS (gene)|MAVS]]) to activate the signaling pathway for IFN1.<ref name="Kell_2015" /><ref name="Brisse_2019" /><del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RIG-I is an ATP-dependent [[DExD/H box proteins|DExD/H box]] [[RNA Helicase|RNA helicase]] that is activated by immunostimulatory RNAs from viruses as well as RNAs of other origins. RIG-I recognizes short [[double-stranded RNA]] (dsRNA) in the cytosol with a blunt 5' end, 5' tri- or di-phosphate end or a [[Five-prime cap|5' 7-methyl guanosine (m7G) cap]] (cap-0), but not RNA with a 5' m7G cap having a ribose 2′-O-methyl modification (cap-1)<ins style="font-weight: bold; text-decoration: none;">.</ins><ref>{{cite journal | vauthors = Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, Schuberth C, Van der Veen AG, Fujimura T, Rehwinkel J, Iskarpatyoti JA, Barchet W, Ludwig J, Dermody TS, Hartmann G, Reis e Sousa C | display-authors = 6 | title = Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates | journal = Nature | volume = 514 | issue = 7522 | pages = 372–375 | date = October 2014 | pmid = 25119032 | pmc = 4201573 | doi = 10.1038/nature13590 | bibcode = 2014Natur.514..372G }}</ref><ref>{{cite journal | vauthors = Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, Patel SS, Marcotrigiano J | display-authors = 6 | title = Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 113 | issue = 3 | pages = 596–601 | date = January 2016 | pmid = 26733676 | doi = 10.1073/pnas.1515152113 | pmc = 4725518 | bibcode = 2016PNAS..113..596D | doi-access = free }}</ref> These are often generated during a viral infection but can also be host-derived<ins style="font-weight: bold; text-decoration: none;">.</ins><ref name="Kell_2015" /><ref name="Brisse_2019">{{cite journal | vauthors = Brisse M, Ly H | title = Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5 | language = English | journal = Frontiers in Immunology | volume = 10 | pages = 1586 | date = 2019 | pmid = 31379819 | pmc = 6652118 | doi = 10.3389/fimmu.2019.01586 | doi-access = free }}</ref><ref name="Xu_2018">{{cite journal | vauthors = Xu XX, Wan H, Nie L, Shao T, Xiang LX, Shao JZ | title = RIG-I: a multifunctional protein beyond a pattern recognition receptor | journal = Protein & Cell | volume = 9 | issue = 3 | pages = 246–253 | date = March 2018 | pmid = 28593618 | pmc = 5829270 | doi = 10.1007/s13238-017-0431-5 }}</ref><ref>{{cite journal | vauthors = Chiang JJ, Sparrer KM, van Gent M, Lässig C, Huang T, Osterrieder N, Hopfner KP, Gack MU | display-authors = 6 | title = Viral unmasking of cellular 5S rRNA pseudogene transcripts induces RIG-I-mediated immunity | journal = Nature Immunology | volume = 19 | issue = 1 | pages = 53–62 | date = January 2018 | pmid = 29180807 | pmc = 5815369 | doi = 10.1038/s41590-017-0005-y }}</ref><ref>{{cite journal | vauthors = Zhao Y, Ye X, Dunker W, Song Y, Karijolich J | title = RIG-I like receptor sensing of host RNAs facilitates the cell-intrinsic immune response to KSHV infection | journal = Nature Communications | volume = 9 | issue = 1 | pages = 4841 | date = November 2018 | pmid = 30451863 | pmc = 6242832 | doi = 10.1038/s41467-018-07314-7 | bibcode = 2018NatCo...9.4841Z }}</ref> Once activated by the dsRNA, the N-terminus [[CARD domain|caspase activation and recruitment domains]] (CARDs) migrate and bind with CARDs attached to mitochondrial antiviral signaling protein ([[MAVS (gene)|MAVS]]) to activate the signaling pathway for IFN1.<ref name="Kell_2015" /><ref name="Brisse_2019" /></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>Type-I IFNs have three main functions: to limit the virus from spreading to nearby cells, promote an innate immune response, including inflammatory responses, and help activate the [[adaptive immune system]].<ref name="Ivashkiv_2014">{{cite journal | vauthors = Ivashkiv LB, Donlin LT | title = Regulation of type I interferon responses | journal = Nature Reviews. Immunology | volume = 14 | issue = 1 | pages = 36–49 | date = January 2014 | pmid = 24362405 | pmc = 4084561 | doi = 10.1038/nri3581 }}</ref> Other studies have shown that in different microenvironments, such as in cancerous cells, RIG-I has more functions other than viral recognition.<ref name="Xu_2018" /> RIG-I orthologs are found in mammals, geese, ducks, some fish, and some reptiles.<ref name="Brisse_2019" /> RIG-I is in most cells, including various innate immune system cells, and is usually in an inactive state.<ref name="Kell_2015" /><ref name="Brisse_2019" /> [[Knockout mouse|Knockout mice]] that have been designed to have a deleted or non-functioning RIG-I gene are not healthy and typically die embryonically. If they survive, the mice have serious developmental dysfunction.<ref name="Brisse_2019" /> The stimulator of interferon genes [[STING]] antagonizes RIG-I by binding its N-terminus, probably as to avoid overactivation of RIG-I signaling and the associated [[autoimmunity]].<del style="font-weight: bold; text-decoration: none;"> </del><ref>{{cite journal | vauthors = Yu P, Miao Z, Li Y, Bansal R, Peppelenbosch MP, Pan Q | title = cGAS-STING effectively restricts murine norovirus infection but antagonizes the antiviral action of N-terminus of RIG-I in mouse macrophages | journal = Gut Microbes | volume = 13 | issue = 1 | pages = 1959839 | date = January 2021 | pmid = 34347572 | pmc = 8344765 | doi = 10.1080/19490976.2021.1959839 }}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>Type-I IFNs have three main functions: to limit the virus from spreading to nearby cells, promote an innate immune response, including inflammatory responses, and help activate the [[adaptive immune system]].<ref name="Ivashkiv_2014">{{cite journal | vauthors = Ivashkiv LB, Donlin LT | title = Regulation of type I interferon responses | journal = Nature Reviews. Immunology | volume = 14 | issue = 1 | pages = 36–49 | date = January 2014 | pmid = 24362405 | pmc = 4084561 | doi = 10.1038/nri3581 }}</ref> Other studies have shown that in different microenvironments, such as in cancerous cells, RIG-I has more functions other than viral recognition.<ref name="Xu_2018" /> RIG-I orthologs are found in mammals, geese, ducks, some fish, and some reptiles.<ref name="Brisse_2019" /> RIG-I is in most cells, including various innate immune system cells, and is usually in an inactive state.<ref name="Kell_2015" /><ref name="Brisse_2019" /> [[Knockout mouse|Knockout mice]] that have been designed to have a deleted or non-functioning RIG-I gene are not healthy and typically die embryonically. If they survive, the mice have serious developmental dysfunction.<ref name="Brisse_2019" /> The stimulator of interferon genes [[STING]] antagonizes RIG-I by binding its N-terminus, probably as to avoid overactivation of RIG-I signaling and the associated [[autoimmunity]].<ref>{{cite journal | vauthors = Yu P, Miao Z, Li Y, Bansal R, Peppelenbosch MP, Pan Q | title = cGAS-STING effectively restricts murine norovirus infection but antagonizes the antiviral action of N-terminus of RIG-I in mouse macrophages | journal = Gut Microbes | volume = 13 | issue = 1 | pages = 1959839 | date = January 2021 | pmid = 34347572 | pmc = 8344765 | doi = 10.1080/19490976.2021.1959839 }}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Structure ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Structure ==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 39:</td>
<td colspan="2" class="diff-lineno">Line 39:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Bowie AG, Fitzgerald KA | title = RIG-I: tri-ing to discriminate between self and non-self RNA | journal = Trends in Immunology | volume = 28 | issue = 4 | pages = 147–150 | date = April 2007 | pmid = 17307033 | doi = 10.1016/j.it.2007.02.002 }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Bowie AG, Fitzgerald KA | title = RIG-I: tri-ing to discriminate between self and non-self RNA | journal = Trends in Immunology | volume = 28 | issue = 4 | pages = 147–150 | date = April 2007 | pmid = 17307033 | doi = 10.1016/j.it.2007.02.002 }}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Imaizumi T, Aratani S, Nakajima T, Carlson M, Matsumiya T, Tanji K, Ookawa K, Yoshida H, Tsuchida S, McIntyre TM, Prescott SM, Zimmerman GA, Satoh K | display-authors = 6 | title = Retinoic acid-inducible gene-I is induced in endothelial cells by LPS and regulates expression of COX-2 | journal = Biochemical and Biophysical Research Communications | volume = 292 | issue = 1 | pages = 274–279 | date = March 2002 | pmid = 11890704 | doi = 10.1006/bbrc.2002.6650 }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Imaizumi T, Aratani S, Nakajima T, Carlson M, Matsumiya T, Tanji K, Ookawa K, Yoshida H, Tsuchida S, McIntyre TM, Prescott SM, Zimmerman GA, Satoh K | display-authors = 6 | title = Retinoic acid-inducible gene-I is induced in endothelial cells by LPS and regulates expression of COX-2 | journal = Biochemical and Biophysical Research Communications | volume = 292 | issue = 1 | pages = 274–279 | date = March 2002 | pmid = 11890704 | doi = 10.1006/bbrc.2002.6650 }}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Cui XF, Imaizumi T, Yoshida H, Borden EC, Satoh K | title = Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates the expression of interferon-gamma stimulated gene 15 in MCF-7 cells | journal = Biochemistry and Cell Biology<del style="font-weight: bold; text-decoration: none;"> = Biochimie et Biologie Cellulaire</del> | volume = 82 | issue = 3 | pages = 401–405 | date = June 2004 | pmid = 15181474 | doi = 10.1139/o04-041 }}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Cui XF, Imaizumi T, Yoshida H, Borden EC, Satoh K | title = Retinoic acid-inducible gene-I is induced by interferon-gamma and regulates the expression of interferon-gamma stimulated gene 15 in MCF-7 cells | journal = Biochemistry and Cell Biology | volume = 82 | issue = 3 | pages = 401–405 | date = June 2004 | pmid = 15181474 | doi = 10.1139/o04-041 }}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T | display-authors = 6 | title = The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses | journal = Nature Immunology | volume = 5 | issue = 7 | pages = 730–737 | date = July 2004 | pmid = 15208624 | doi = 10.1038/ni1087 | s2cid = 34876422 }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T | display-authors = 6 | title = The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses | journal = Nature Immunology | volume = 5 | issue = 7 | pages = 730–737 | date = July 2004 | pmid = 15208624 | doi = 10.1038/ni1087 | s2cid = 34876422 }}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Imaizumi T, Yagihashi N, Hatakeyama M, Yamashita K, Ishikawa A, Taima K, Yoshida H, Inoue I, Fujita T, Yagihashi S, Satoh K | display-authors = 6 | title = Expression of retinoic acid-inducible gene-I in vascular smooth muscle cells stimulated with interferon-gamma | journal = Life Sciences | volume = 75 | issue = 10 | pages = 1171–1180 | date = July 2004 | pmid = 15219805 | doi = 10.1016/j.lfs.2004.01.030 }}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>* {{cite journal | vauthors = Imaizumi T, Yagihashi N, Hatakeyama M, Yamashita K, Ishikawa A, Taima K, Yoshida H, Inoue I, Fujita T, Yagihashi S, Satoh K | display-authors = 6 | title = Expression of retinoic acid-inducible gene-I in vascular smooth muscle cells stimulated with interferon-gamma | journal = Life Sciences | volume = 75 | issue = 10 | pages = 1171–1180 | date = July 2004 | pmid = 15219805 | doi = 10.1016/j.lfs.2004.01.030 }}</div></td>
</tr>
</table>
JCW-CleanerBot
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1168716485&oldid=prev
Innatestability: /* Identification and naming */
2023-08-04T14:55:23Z
<p><span class="autocomment">Identification and naming</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 14:55, 4 August 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 29:</td>
<td colspan="2" class="diff-lineno">Line 29:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Identification and naming ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== Identification and naming ==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | url = https://pubmed.ncbi.nlm.nih.gov/10942397/ }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>RIG-I was named by researchers from the Shanghai Institute of Hematology who identified novel genes that respond to [[Tretinoin|all-''trans'' retinoic acid]] (ATRA) in leukemia cells.<ref>{{cite journal | vauthors = Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L, Chen Z | display-authors = 6 | title = Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells | journal = Blood | volume = 96 | issue = 4 | pages = 1496–1504 | date = August 2000 | doi = 10.1182/blood.V96.4.1496 | pmid = 10942397 | url = https://pubmed.ncbi.nlm.nih.gov/10942397/ }}</ref> RIG-I and the other genes were assigned the temporary name of RIG (retinoic acid–induced gene) in the format of RIG-A, RIG-B etc by the group, however they performed no additional characterization<ins style="font-weight: bold; text-decoration: none;"> on RIG-I</ins>.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>== References ==</div></td>
</tr>
</table>
Innatestability
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1167561951&oldid=prev
Citation bot: Alter: journal, issue. Add: url, doi, doi-access, pmc, bibcode. Formatted dashes. | Use this bot. Report bugs. | Suggested by Boghog | #UCB_webform
2023-07-28T14:03:21Z
<p>Alter: journal, issue. Add: url, doi, doi-access, pmc, bibcode. Formatted <a href="/wiki/Wikipedia:ENDASH" class="mw-redirect" title="Wikipedia:ENDASH">dashes</a>. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by Boghog | #UCB_webform</p>
<a href="//en.wikipedia.org/w/index.php?title=RIG-I&diff=1167561951&oldid=1167561550">Show changes</a>
Citation bot
https://en.wikipedia.org/w/index.php?title=RIG-I&diff=1167561550&oldid=prev
Boghog: consistent citation formatting
2023-07-28T14:00:12Z
<p>consistent citation formatting</p>
<a href="//en.wikipedia.org/w/index.php?title=RIG-I&diff=1167561550&oldid=1167554162">Show changes</a>
Boghog