https://en.wikipedia.org/w/index.php?action=history&feed=atom&title=Truncated_meanTruncated mean - Revision history2024-12-28T09:26:46ZRevision history for this page on the wikiMediaWiki 1.44.0-wmf.8https://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=1162058593&oldid=prevUnruffled haslett: remove 'Drawbacks' section, as it is redundant and silly as per discussion on talk page.2023-06-26T19:10:24Z<p>remove 'Drawbacks' section, as it is redundant and silly as per discussion on talk page.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:10, 26 June 2023</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 19:</td>
<td colspan="2" class="diff-lineno">Line 19:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38% at each end) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|author-link= Thomas S. Ferguson |year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|pages=211–213|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38% at each end) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|author-link= Thomas S. Ferguson |year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|pages=211–213|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean uses more information from the distribution or [[Sample (statistics)|sample]] than the [[median]], but unless the underlying distribution is [[Symmetry|symmetric]], the truncated mean of a sample is unlikely to produce an [[Bias of an estimator|unbiased estimator]] for either the mean or the median.</div></td>
<td colspan="2" class="diff-empty diff-side-added"></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Statistical tests==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Statistical tests==</div></td>
</tr>
</table>Unruffled hasletthttps://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=1116558174&oldid=prevI dream of horses: /* top */Autowikibrowser cleanup, typo(s) fixed: heavily- → heavily2022-10-17T05:07:07Z<p><span class="autocomment">top: </span><a href="/wiki/Wikipedia:AWB" class="mw-redirect" title="Wikipedia:AWB">Autowikibrowser</a> cleanup, <a href="/wiki/Wikipedia:AWB/T" class="mw-redirect" title="Wikipedia:AWB/T">typo(s) fixed</a>: heavily- → heavily</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:07, 17 October 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 5:</td>
<td colspan="2" class="diff-lineno">Line 5:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For most statistical applications, 5 to 25 percent of the ends are discarded. For example, given a set of 8 points, trimming by 12.5% would discard the minimum and maximum value in the sample: the smallest and largest values, and would compute the mean of the remaining 6 points. The 25% trimmed mean (when the lowest 25% and the highest 25% are discarded) is known as the [[interquartile mean]].</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>For most statistical applications, 5 to 25 percent of the ends are discarded. For example, given a set of 8 points, trimming by 12.5% would discard the minimum and maximum value in the sample: the smallest and largest values, and would compute the mean of the remaining 6 points. The 25% trimmed mean (when the lowest 25% and the highest 25% are discarded) is known as the [[interquartile mean]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The median can be regarded as a fully truncated mean and is most robust. As with other [[trimmed estimator]]s, the main advantage of the trimmed mean is robustness and higher [[Efficiency (statistics)|efficiency]] for mixed distributions and heavy-tailed distribution (like the [[Cauchy distribution]]), at the cost of lower efficiency for some other less heavily<del style="font-weight: bold; text-decoration: none;">-</del>tailed distributions (such as the normal distribution). For intermediate distributions the differences between the efficiency of the mean and the median are not very big, e.g. for the student-t distribution with 2 degrees of freedom the variances for mean and median are nearly equal.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The median can be regarded as a fully truncated mean and is most robust. As with other [[trimmed estimator]]s, the main advantage of the trimmed mean is robustness and higher [[Efficiency (statistics)|efficiency]] for mixed distributions and heavy-tailed distribution (like the [[Cauchy distribution]]), at the cost of lower efficiency for some other less heavily<ins style="font-weight: bold; text-decoration: none;"> </ins>tailed distributions (such as the normal distribution). For intermediate distributions the differences between the efficiency of the mean and the median are not very big, e.g. for the student-t distribution with 2 degrees of freedom the variances for mean and median are nearly equal.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Terminology==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Terminology==</div></td>
</tr>
</table>I dream of horseshttps://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=1067077400&oldid=prev77.87.179.130: /* Examples */2022-01-21T16:16:45Z<p><span class="autocomment">Examples</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:16, 21 January 2022</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 30:</td>
<td colspan="2" class="diff-lineno">Line 30:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The scoring method used in many [[sport]]s that are evaluated by a panel of judges is a truncated mean: ''discard the lowest and the highest scores; calculate the mean value of the remaining scores''.<ref name="wsj-sport">{{cite web |url=https://www.wsj.com/articles/SB10000872396390443477104577551253521597214 |title=Removing Judges' Bias Is Olympic-Size Challenge |last1=Bialik |first1=Carl|date=27 July 2012 |website=The Wall Street Journal | accessdate=7 September 2014}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The scoring method used in many [[sport]]s that are evaluated by a panel of judges is a truncated mean: ''discard the lowest and the highest scores; calculate the mean value of the remaining scores''.<ref name="wsj-sport">{{cite web |url=https://www.wsj.com/articles/SB10000872396390443477104577551253521597214 |title=Removing Judges' Bias Is Olympic-Size Challenge |last1=Bialik |first1=Carl|date=27 July 2012 |website=The Wall Street Journal | accessdate=7 September 2014}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>The [[Libor]] benchmark interest rate is [[Libor#Calculation|calculated]] as a trimmed mean: given 18 <del style="font-weight: bold; text-decoration: none;">response</del>, the top 4 and bottom 4 are discarded, and the remaining 10 are averaged (yielding trim factor of 4/18 ≈ 22%).<ref>{{Cite web|url=http://www.bbalibor.com/explained/the-basics|title=bbalibor: The Basics|publisher=The British Bankers' Association}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>The [[Libor]] benchmark interest rate is [[Libor#Calculation|calculated]] as a trimmed mean: given 18 <ins style="font-weight: bold; text-decoration: none;">responses</ins>, the top 4 and bottom 4 are discarded, and the remaining 10 are averaged (yielding trim factor of 4/18 ≈ 22%).<ref>{{Cite web|url=http://www.bbalibor.com/explained/the-basics|title=bbalibor: The Basics|publisher=The British Bankers' Association}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Consider the data set consisting of:</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Consider the data set consisting of:</div></td>
</tr>
</table>77.87.179.130https://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=1052197854&oldid=prevCitation bot: Add: date, title, pages. Changed bare reference to CS1/2. Removed parameters. | Use this bot. Report bugs. | Suggested by BrownHairedGirl | Linked from User:BrownHairedGirl/Articles_with_bare_links | #UCB_webform_linked 605/6482021-10-27T22:24:52Z<p>Add: date, title, pages. Changed bare reference to CS1/2. Removed parameters. | <a href="/wiki/Wikipedia:UCB" class="mw-redirect" title="Wikipedia:UCB">Use this bot</a>. <a href="/wiki/Wikipedia:DBUG" class="mw-redirect" title="Wikipedia:DBUG">Report bugs</a>. | Suggested by BrownHairedGirl | Linked from User:BrownHairedGirl/Articles_with_bare_links | #UCB_webform_linked 605/648</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 22:24, 27 October 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 18:</td>
<td colspan="2" class="diff-lineno">Line 18:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean is a useful estimator because it is less sensitive to [[outlier]]s than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a [[Robust statistics|robust estimator]]. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean is a useful estimator because it is less sensitive to [[outlier]]s than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a [[Robust statistics|robust estimator]]. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38% at each end) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|author-link= Thomas S. Ferguson |year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|<del style="font-weight: bold; text-decoration: none;">page</del>=<del style="font-weight: bold; text-decoration: none;">211</del>|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38% at each end) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|author-link= Thomas S. Ferguson |year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|<ins style="font-weight: bold; text-decoration: none;">pages</ins>=<ins style="font-weight: bold; text-decoration: none;">211–213</ins>|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 25:</td>
<td colspan="2" class="diff-lineno">Line 25:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Statistical tests==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Statistical tests==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>It is possible to perform a [[Student's t-test]] based on the truncated mean, which is called Yuen's t-test,<ref>Yuen, K.K. (1974) The two-sample trimmed t for unequal population variances. Biometrika, 61, 165-170.</ref><ref>Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing. Academic Press.</ref> which also has several implementations in [[R (programming language)|R]].<ref>https://cran.r-project.org/web/packages/WRS2/</ref><ref>https://cran.r-project.org/web/packages/DescTools/</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It is possible to perform a [[Student's t-test]] based on the truncated mean, which is called Yuen's t-test,<ref>Yuen, K.K. (1974) The two-sample trimmed t for unequal population variances. Biometrika, 61, 165-170.</ref><ref>Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing. Academic Press.</ref> which also has several implementations in [[R (programming language)|R]].<ref><ins style="font-weight: bold; text-decoration: none;">{{Cite web|url=</ins>https://cran.r-project.org/web/packages/WRS2/<ins style="font-weight: bold; text-decoration: none;">|title=WRS2: A Collection of Robust Statistical Methods|date=20 July 2021}}</ins></ref><ref><ins style="font-weight: bold; text-decoration: none;">{{Cite web|url=</ins>https://cran.r-project.org/web/packages/DescTools/<ins style="font-weight: bold; text-decoration: none;">|title = DescTools: Tools for Descriptive Statistics|date = 9 September 2021}}</ins></ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Examples==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Examples==</div></td>
</tr>
</table>Citation bothttps://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=1000340503&oldid=prevYobot: References after punctuation per WP:REFPUNCT, WP:CITEFOOT, WP:PAIC + other fixes2021-01-14T18:35:31Z<p>References after punctuation per <a href="/wiki/Wikipedia:REFPUNCT" class="mw-redirect" title="Wikipedia:REFPUNCT">WP:REFPUNCT</a>, <a href="/wiki/Wikipedia:CITEFOOT" class="mw-redirect" title="Wikipedia:CITEFOOT">WP:CITEFOOT</a>, <a href="/wiki/Wikipedia:PAIC" class="mw-redirect" title="Wikipedia:PAIC">WP:PAIC</a> + other fixes</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 18:35, 14 January 2021</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 1:</td>
<td colspan="2" class="diff-lineno">Line 1:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Statistical measure of central tendency}}</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>{{short description|Statistical measure of central tendency}}</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>{{<del style="font-weight: bold; text-decoration: none;">Refimprove</del>|date=July 2010}}</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>{{<ins style="font-weight: bold; text-decoration: none;">More citations needed</ins>|date=July 2010}}</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''truncated mean''' or '''trimmed mean''' is a [[Statistics|statistical]] [[Average|measure of central tendency]], much like the [[mean]] and [[median]]. It involves the calculation of the mean after discarding given parts of a [[probability distribution]] or [[Sampling (statistics)|sample]] at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''truncated mean''' or '''trimmed mean''' is a [[Statistics|statistical]] [[Average|measure of central tendency]], much like the [[mean]] and [[median]]. It involves the calculation of the mean after discarding given parts of a [[probability distribution]] or [[Sampling (statistics)|sample]] at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For most statistical applications, 5 to 25 percent of the ends are discarded. For example, given a set of 8 points, trimming by 12.5% would discard the minimum and maximum value in the sample: the smallest and largest values, and would compute the mean of the remaining 6 points. The 25% trimmed mean (when the lowest 25% and the highest 25% are discarded) is known as the [[interquartile mean]].<del style="font-weight: bold; text-decoration: none;"> </del></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For most statistical applications, 5 to 25 percent of the ends are discarded. For example, given a set of 8 points, trimming by 12.5% would discard the minimum and maximum value in the sample: the smallest and largest values, and would compute the mean of the remaining 6 points. The 25% trimmed mean (when the lowest 25% and the highest 25% are discarded) is known as the [[interquartile mean]].</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The median can be regarded as a fully truncated mean and is most robust. As with other [[trimmed estimator]]s, the main advantage of the trimmed mean is robustness and higher [[Efficiency (statistics)|efficiency]] for mixed distributions and heavy-tailed distribution (like the [[Cauchy distribution]]), at the cost of lower efficiency for some other less heavily-tailed distributions (such as the normal distribution). For intermediate distributions the differences between the efficiency of the mean and the median are not very big, e.g. for the student-t distribution with 2 degrees of freedom the variances for mean and median are nearly equal.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The median can be regarded as a fully truncated mean and is most robust. As with other [[trimmed estimator]]s, the main advantage of the trimmed mean is robustness and higher [[Efficiency (statistics)|efficiency]] for mixed distributions and heavy-tailed distribution (like the [[Cauchy distribution]]), at the cost of lower efficiency for some other less heavily-tailed distributions (such as the normal distribution). For intermediate distributions the differences between the efficiency of the mean and the median are not very big, e.g. for the student-t distribution with 2 degrees of freedom the variances for mean and median are nearly equal.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Terminology==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Terminology==</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>In some regions of [[Central Europe]] it is also known as a '''Windsor mean''',{{<del style="font-weight: bold; text-decoration: none;">fact</del>|date=October 2016}} but this name should not be confused with the [[Winsorized mean]]: in the latter, the observations that the trimmed mean would discard are instead replaced by the largest/smallest of the remaining values.</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>In some regions of [[Central Europe]] it is also known as a '''Windsor mean''',{{<ins style="font-weight: bold; text-decoration: none;">citation needed</ins>|date=October 2016}} but this name should not be confused with the [[Winsorized mean]]: in the latter, the observations that the trimmed mean would discard are instead replaced by the largest/smallest of the remaining values.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Discarding only the maximum and minimum is known as the '''{{visible anchor|modified mean}}''', particularly in management statistics.<ref>Arulmozhi, G.; Statistics For Management, 2nd Edition, Tata McGraw-Hill Education, 2009, p. [https://books.google.com/books?id=2qcyNld-bHwC&pg=PA458&lpg=PA458&dq=Modified+mean 458]</ref> This is also known as the '''{{visible anchor|Olympic average}}''' (for example in US agriculture, like the [[Average Crop Revenue Election]]), due to its use in Olympic events, such as the [[ISU Judging System]] in [[figure skating]], to make the score robust to a single outlier judge.<ref>{{cite web |url=http://farmdocdaily.illinois.edu/2012/08/lessons_from_libor.html |title=Lessons from LIBOR |author=Paul E. Peterson |date=August 3, 2012 |quote=Once the quotes are compiled, LIBOR uses a trimmed mean process, in which the highest and lowest values are thrown out and the remaining values are averaged. This is sometimes called an "Olympic average" from its use in the Olympics to eliminate the impact of a biased judge on an athlete's final score.}}</ref></div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>Discarding only the maximum and minimum is known as the '''{{visible anchor|modified mean}}''', particularly in management statistics.<ref>Arulmozhi, G.; Statistics For Management, 2nd Edition, Tata McGraw-Hill Education, 2009, p. [https://books.google.com/books?id=2qcyNld-bHwC&pg=PA458&lpg=PA458&dq=Modified+mean 458]</ref> This is also known as the '''{{visible anchor|Olympic average}}''' (for example in US agriculture, like the [[Average Crop Revenue Election]]), due to its use in Olympic events, such as the [[ISU Judging System]] in [[figure skating]], to make the score robust to a single outlier judge.<ref>{{cite web |url=http://farmdocdaily.illinois.edu/2012/08/lessons_from_libor.html |title=Lessons from LIBOR |author=Paul E. Peterson |date=August 3, 2012 |quote=Once the quotes are compiled, LIBOR uses a trimmed mean process, in which the highest and lowest values are thrown out and the remaining values are averaged. This is sometimes called an "Olympic average" from its use in the Olympics to eliminate the impact of a biased judge on an athlete's final score.}}</ref></div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 18:</td>
<td colspan="2" class="diff-lineno">Line 18:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean is a useful estimator because it is less sensitive to [[outlier]]s than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a [[Robust statistics|robust estimator]]. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean is a useful estimator because it is less sensitive to [[outlier]]s than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a [[Robust statistics|robust estimator]]. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38% at each end) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|<del style="font-weight: bold; text-decoration: none;">authorlink</del>= Thomas S. Ferguson |year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|page=211|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38% at each end) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|<ins style="font-weight: bold; text-decoration: none;">author-link</ins>= Thomas S. Ferguson |year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|page=211|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 25:</td>
<td colspan="2" class="diff-lineno">Line 25:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Statistical tests==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Statistical tests==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>It is possible to perform a [[Student's t-test]] based on the truncated mean, which is called Yuen's t-test<del style="font-weight: bold; text-decoration: none;"> </del><ref>Yuen, K.K. (1974) The two-sample trimmed t for unequal population variances. Biometrika, 61, 165-170.</ref><ref>Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing. Academic Press.</ref><del style="font-weight: bold; text-decoration: none;">,</del> which also has several implementations in [[R (programming language)|R]].<del style="font-weight: bold; text-decoration: none;"> </del><ref>https://cran.r-project.org/web/packages/WRS2/</ref><ref>https://cran.r-project.org/web/packages/DescTools/</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It is possible to perform a [[Student's t-test]] based on the truncated mean, which is called Yuen's t-test<ins style="font-weight: bold; text-decoration: none;">,</ins><ref>Yuen, K.K. (1974) The two-sample trimmed t for unequal population variances. Biometrika, 61, 165-170.</ref><ref>Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing. Academic Press.</ref> which also has several implementations in [[R (programming language)|R]].<ref>https://cran.r-project.org/web/packages/WRS2/</ref><ref>https://cran.r-project.org/web/packages/DescTools/</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Examples==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Examples==</div></td>
</tr>
<tr>
<td colspan="2" class="diff-lineno">Line 43:</td>
<td colspan="2" class="diff-lineno">Line 43:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Trimean]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Trimean]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Interquartile mean]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Interquartile mean]]</div></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>*[[<del style="font-weight: bold; text-decoration: none;">Winsorized_mean</del>]]</div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*[[<ins style="font-weight: bold; text-decoration: none;">Winsorized mean</ins>]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>Yobothttps://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=983627573&oldid=prev89.64.91.176: /* See also */2020-10-15T09:13:22Z<p><span class="autocomment">See also</span></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 09:13, 15 October 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 43:</td>
<td colspan="2" class="diff-lineno">Line 43:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Trimean]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Trimean]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Interquartile mean]]</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>*[[Interquartile mean]]</div></td>
</tr>
<tr>
<td colspan="2" class="diff-empty diff-side-deleted"></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>*[[Winsorized_mean]]</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==References==</div></td>
</tr>
</table>89.64.91.176https://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=968469401&oldid=prev208.53.111.247: /* Advantages */ minor clarification for unfamiliar readers2020-07-19T16:00:56Z<p><span class="autocomment">Advantages: </span> minor clarification for unfamiliar readers</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 16:00, 19 July 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 18:</td>
<td colspan="2" class="diff-lineno">Line 18:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean is a useful estimator because it is less sensitive to [[outlier]]s than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a [[Robust statistics|robust estimator]]. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean is a useful estimator because it is less sensitive to [[outlier]]s than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a [[Robust statistics|robust estimator]]. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38%) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|authorlink= Thomas S. Ferguson |year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|page=211|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38%<ins style="font-weight: bold; text-decoration: none;"> at each end</ins>) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|authorlink= Thomas S. Ferguson |year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|page=211|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
</tr>
</table>208.53.111.247https://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=962460755&oldid=prevGuccizBud: /* Statistical tests */ Copy edit (minor) ▸ Grammar ▸ Run-on sentence.2020-06-14T05:54:57Z<p><span class="autocomment">Statistical tests: </span> Copy edit (minor) ▸ Grammar ▸ Run-on sentence.</p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 05:54, 14 June 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 25:</td>
<td colspan="2" class="diff-lineno">Line 25:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Statistical tests==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Statistical tests==</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>It is possible to perform a [[Student's t-test]] based on the truncated mean, <del style="font-weight: bold; text-decoration: none;">this</del> is called Yuen's t-test <ref>Yuen, K.K. (1974) The two-sample trimmed t for unequal population variances. Biometrika, 61, 165-170.</ref><ref>Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing. Academic Press.</ref>, which also has several implementations in [[R (programming language)|R]] <ref>https://cran.r-project.org/web/packages/WRS2/</ref><ref>https://cran.r-project.org/web/packages/DescTools/</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>It is possible to perform a [[Student's t-test]] based on the truncated mean, <ins style="font-weight: bold; text-decoration: none;">which</ins> is called Yuen's t-test <ref>Yuen, K.K. (1974) The two-sample trimmed t for unequal population variances. Biometrika, 61, 165-170.</ref><ref>Wilcox, R.R. (2005). Introduction to robust estimation and hypothesis testing. Academic Press.</ref>, which also has several implementations in [[R (programming language)|R]]<ins style="font-weight: bold; text-decoration: none;">.</ins> <ref>https://cran.r-project.org/web/packages/WRS2/</ref><ref>https://cran.r-project.org/web/packages/DescTools/</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Examples==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Examples==</div></td>
</tr>
</table>GuccizBudhttps://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=961026495&oldid=prevDavid Eppstein: Thomas S. Ferguson2020-06-06T07:03:30Z<p><a href="/wiki/Thomas_S._Ferguson" title="Thomas S. Ferguson">Thomas S. Ferguson</a></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 07:03, 6 June 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 18:</td>
<td colspan="2" class="diff-lineno">Line 18:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean is a useful estimator because it is less sensitive to [[outlier]]s than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a [[Robust statistics|robust estimator]]. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The truncated mean is a useful estimator because it is less sensitive to [[outlier]]s than the mean but will still give a reasonable estimate of central tendency or mean for many statistical models. In this regard it is referred to as a [[Robust statistics|robust estimator]]. For example, in its use in Olympic judging, truncating the maximum and minimum prevents a single judge from increasing or lowering the overall score by giving an exceptionally high or low score.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38%) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.|year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|page=211|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>One situation in which it can be advantageous to use a truncated mean is when estimating the [[location parameter]] of a [[Cauchy distribution]], a bell shaped probability distribution with (much) fatter tails than a [[normal distribution]]. It can be shown that the truncated mean of the middle 24% sample [[order statistics]] (i.e., truncate the sample by 38%) produces an estimate for the population location parameter that is more efficient than using either the sample median or the full sample mean.<ref name=rothenberg>{{cite journal|last1=Rothenberg|first1=Thomas J.|last2=Fisher|first2=Franklin, M.|last3=Tilanus|first3=C.B.|year=1964|volume=59|issue=306|journal=Journal of the American Statistical Association|title=A note on estimation from a cauchy sample|pages=460–463|doi=10.1080/01621459.1964.10482170}}</ref><ref name=bloch>{{cite journal|last1=Bloch|first1=Daniel|year=1966|volume=61|issue=316|journal=Journal of the American Statistical Association|title=A note on the estimation of the location parameters of the Cauchy distribution|pages=852–855|jstor=2282794|doi=10.1080/01621459.1966.10480912}}</ref> However, due to the fat tails of the Cauchy distribution, the efficiency of the estimator decreases as more of the sample gets used in the estimate.<ref name=rothenberg/><ref name=bloch/> Note that for the Cauchy distribution, neither the truncated mean, full sample mean or sample median represents a [[maximum likelihood]] estimator, nor are any as asymptotically efficient as the maximum likelihood estimator; however, the maximum likelihood estimate is more difficult to compute, leaving the truncated mean as a useful alternative.<ref name=bloch/><ref name=ferguson>{{cite journal|last1=Ferguson|first1=Thomas S.<ins style="font-weight: bold; text-decoration: none;">|authorlink= Thomas S. Ferguson </ins>|year=1978|journal=Journal of the American Statistical Association |volume=73|issue=361|title=Maximum Likelihood Estimates of the Parameters of the Cauchy Distribution for Samples of Size 3 and 4|page=211|jstor=2286549|doi=10.1080/01621459.1978.10480031}}</ref></div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>==Drawbacks==</div></td>
</tr>
</table>David Eppsteinhttps://en.wikipedia.org/w/index.php?title=Truncated_mean&diff=936108583&oldid=prevSamlin413 at 19:19, 16 January 20202020-01-16T19:19:09Z<p></p>
<table style="background-color: #fff; color: #202122;" data-mw="interface">
<col class="diff-marker" />
<col class="diff-content" />
<col class="diff-marker" />
<col class="diff-content" />
<tr class="diff-title" lang="en">
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">← Previous revision</td>
<td colspan="2" style="background-color: #fff; color: #202122; text-align: center;">Revision as of 19:19, 16 January 2020</td>
</tr><tr>
<td colspan="2" class="diff-lineno">Line 3:</td>
<td colspan="2" class="diff-lineno">Line 3:</td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''truncated mean''' or '''trimmed mean''' is a [[Statistics|statistical]] [[Average|measure of central tendency]], much like the [[mean]] and [[median]]. It involves the calculation of the mean after discarding given parts of a [[probability distribution]] or [[Sampling (statistics)|sample]] at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>A '''truncated mean''' or '''trimmed mean''' is a [[Statistics|statistical]] [[Average|measure of central tendency]], much like the [[mean]] and [[median]]. It involves the calculation of the mean after discarding given parts of a [[probability distribution]] or [[Sampling (statistics)|sample]] at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points.</div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker" data-marker="−"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #ffe49c; vertical-align: top; white-space: pre-wrap;"><div>For most statistical applications, 5 to 25 percent of the ends are discarded<del style="font-weight: bold; text-decoration: none;">; the 25% trimmed mean (when the lowest 25% and the highest 25% are discarded) is known as the [[interquartile mean]]</del>. For example, given a set of 8 points, trimming by 12.5% would discard the minimum and maximum value in the sample: the smallest and largest values, and would compute the mean of the remaining 6 points. </div></td>
<td class="diff-marker" data-marker="+"></td>
<td style="color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #a3d3ff; vertical-align: top; white-space: pre-wrap;"><div>For most statistical applications, 5 to 25 percent of the ends are discarded. For example, given a set of 8 points, trimming by 12.5% would discard the minimum and maximum value in the sample: the smallest and largest values, and would compute the mean of the remaining 6 points<ins style="font-weight: bold; text-decoration: none;">. The 25% trimmed mean (when the lowest 25% and the highest 25% are discarded) is known as the [[interquartile mean]]</ins>. </div></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><br /></td>
</tr>
<tr>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The median can be regarded as a fully truncated mean and is most robust. As with other [[trimmed estimator]]s, the main advantage of the trimmed mean is robustness and higher [[Efficiency (statistics)|efficiency]] for mixed distributions and heavy-tailed distribution (like the [[Cauchy distribution]]), at the cost of lower efficiency for some other less heavily-tailed distributions (such as the normal distribution). For intermediate distributions the differences between the efficiency of the mean and the median are not very big, e.g. for the student-t distribution with 2 degrees of freedom the variances for mean and median are nearly equal.</div></td>
<td class="diff-marker"></td>
<td style="background-color: #f8f9fa; color: #202122; font-size: 88%; border-style: solid; border-width: 1px 1px 1px 4px; border-radius: 0.33em; border-color: #eaecf0; vertical-align: top; white-space: pre-wrap;"><div>The median can be regarded as a fully truncated mean and is most robust. As with other [[trimmed estimator]]s, the main advantage of the trimmed mean is robustness and higher [[Efficiency (statistics)|efficiency]] for mixed distributions and heavy-tailed distribution (like the [[Cauchy distribution]]), at the cost of lower efficiency for some other less heavily-tailed distributions (such as the normal distribution). For intermediate distributions the differences between the efficiency of the mean and the median are not very big, e.g. for the student-t distribution with 2 degrees of freedom the variances for mean and median are nearly equal.</div></td>
</tr>
</table>Samlin413