Climate change: Difference between revisions
→Causes: Added list of main greenhouse gases |
→Other hypotheses: put back "global", the keywords were originally misstated and subsequent correction published |
||
Line 58: | Line 58: | ||
===Other hypotheses=== |
===Other hypotheses=== |
||
The extent of the [[scientific opinion on climate change|scientific consensus]] on global warming—that "most of the observed warming over the last 50 years is likely to have been [[Attribution of recent climate change|attributable to human activities]]"<ref name = grida7> </ref>—has been investigated: In the journal [[Science (journal)|''Science'']] in December 2004, [[Naomi Oreskes]] published a study of the abstracts of the 928 refereed scientific articles in the [[Institute for Scientific Information|ISI citation database]] identified with the keywords "climate change" and published from 1993–2003. This study concluded that 75% of the 928 articles either explicitly or implicitly accepted the consensus view—the remainder of the articles covered methods or paleoclimate and did not take any stance on recent climate change. The study did not report how many of the 928 abstracts explicitly accepted the hypothesis of human-induced warming, but none of the 928 articles surveyed accepted any other hypothesis.[http://www.sciencemag.org/cgi/content/full/306/5702/1686] |
The extent of the [[scientific opinion on climate change|scientific consensus]] on global warming—that "most of the observed warming over the last 50 years is likely to have been [[Attribution of recent climate change|attributable to human activities]]"<ref name = grida7> </ref>—has been investigated: In the journal [[Science (journal)|''Science'']] in December 2004, [[Naomi Oreskes]] published a study of the abstracts of the 928 refereed scientific articles in the [[Institute for Scientific Information|ISI citation database]] identified with the keywords "global climate change" and published from 1993–2003. This study concluded that 75% of the 928 articles either explicitly or implicitly accepted the consensus view—the remainder of the articles covered methods or paleoclimate and did not take any stance on recent climate change. The study did not report how many of the 928 abstracts explicitly accepted the hypothesis of human-induced warming, but none of the 928 articles surveyed accepted any other hypothesis.[http://www.sciencemag.org/cgi/content/full/306/5702/1686] |
||
In 2007, the Intergovernmental Panel on Climate Change concluded that human actions are "very likely" the cause of global warming, meaning a 90% or greater probability.<ref>{{cite news |title=Warming 'very likely' human-made |url=http://news.bbc.co.uk/2/hi/science/nature/6321351.stm |work=[[BBC News]] |publisher=[[BBC]] |date=[[2007-02-01]] |accessdate=2007-02-01 }}</ref> |
In 2007, the Intergovernmental Panel on Climate Change concluded that human actions are "very likely" the cause of global warming, meaning a 90% or greater probability.<ref>{{cite news |title=Warming 'very likely' human-made |url=http://news.bbc.co.uk/2/hi/science/nature/6321351.stm |work=[[BBC News]] |publisher=[[BBC]] |date=[[2007-02-01]] |accessdate=2007-02-01 }}</ref> |
Revision as of 19:46, 7 February 2007
Global warming is the observed increase in the average temperature of the Earth's atmosphere and oceans in recent decades, and its projected continuation. Models referenced by the Intergovernmental Panel on Climate Change (IPCC) predict that global temperatures are likely to increase by 1.1 to 6.4 °C (2.0 to 11.5 °F) between 1990 and 2100.[1] The uncertainty in this range results from both the difficulty of predicting the volume of future greenhouse gas emissions and uncertainty about climate sensitivity and feedback effects.
Global average near-surface atmospheric temperature rose 0.6 ± 0.2 °Celsius (1.1 ± 0.4 °Fahrenheit) in the 20th century. The prevailing scientific opinion on climate change is that "most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations",[1] which leads to warming of the surface and lower atmosphere by increasing the greenhouse effect. Greenhouse gases are released by activities such as the burning of fossil fuels, land clearing, and agriculture. Other phenomena such as solar variation have had smaller but non-negligible effects on global temperature trends since 1950.[2]
An increase in global temperatures can in turn cause other changes, including a rising sea level and changes in the amount and pattern of precipitation. These changes may increase the frequency and intensity of extreme weather events, such as floods, droughts, heat waves, hurricanes, and tornados. Other consequences include higher or lower agricultural yields, glacier retreat, reduced summer streamflows, species extinctions and increases in the ranges of disease vectors. Warming is expected to affect the number and magnitude of these events; however, it is difficult to connect particular events to global warming. Although most studies focus on the period up to 2100, even if no further greenhouse gases were released after this date, warming (and sea level) would be expected to continue to rise for more than a millenium, since CO2 has a long average atmospheric lifetime.
Remaining scientific uncertainties include the exact degree of climate change expected in the future, and especially how changes will vary from region to region across the globe. A hotly contested political and public debate has yet to be resolved, regarding whether anything should be done, and what could be cost-effectively done to reduce or reverse future warming, or to deal with the expected consequences. Most national governments have signed and ratified the Kyoto Protocol aimed at combatting global warming. (See: List of Kyoto Protocol signatories.)
Terminology
The term "global warming" is a specific case of the more general term "climate change" (which can also refer to "global cooling," such as occurs during ice ages). In principle, "global warming" is neutral as to the period or causes, but in common usage, "global warming" generally refers to recent warming, and implies a human influence. However, the UNFCCC uses "climate change" for human-caused change, and "climate variability" for other changes.[3] Some organizations use the term "anthropogenic climate change" for human-induced changes.
History of warming
Relative to the period 1860–1900, global temperatures on both land and sea have increased by 0.75 °C (1.4 °F), according to the instrumental temperature record. Since 1979, land temperatures have increased about twice as fast as ocean temperatures (0.25 °C/decade against 0.13 °C/decade) (Smith, 2005). Temperatures in the lower troposphere have increased between 0.12 and 0.22 °C per decade since 1979, according to satellite temperature measurements. Over the one or two thousand years before 1850, world temperature is believed to have been relatively stable, with possibly regional fluctuations such as the Medieval Warm Period or the Little Ice Age.
Based on estimates by NASA's Goddard Institute for Space Studies, 2005 was the warmest year since reliable, widespread instrumental measurements became available in the late 1800s, exceeding the previous record set in 1998 by a few hundredths of a degree. Estimates prepared by the World Meteorological Organization and the UK Climatic Research Unit concluded that 2005 was still only the second warmest year, behind 1998.[4][5]
A number of temperature records are available based on different data sets with different time frames. The longest perspective is available from various proxy records for recent millennia. (See temperature record of the past 1000 years for a discussion of these records and their differences.) An approximately global instrumental record of temperature near the earth's surface begins in about 1860. Global observations of the atmosphere well above the Earth's surface using data from radiosondes began shortly after World War II. Satellite temperature measurements of the tropospheric temperature date from 1979. The attribution of recent climate change is clearest for the most recent period of the last 50 years, for which the most detailed data are available.
Causes
The climate system varies both through natural, internal processes as well as in response to variations in external "forcing" from both human and non-human causes, including solar activity, volcanic emissions, variations in the earth's orbit (orbital forcing) and greenhouse gases. The detailed causes of the recent warming remain an active field of research, but the scientific consensus identifies greenhouse gases as the main influence. The major natural greenhouse gases are water vapor, which causes about 36-70% of the greenhouse effect on Earth (not including clouds); carbon dioxide, which causes 9-26%; methane, which causes 4-9%, and ozone, which causes 3-7%.
Adding carbon dioxide (CO2) or methane (CH4) to Earth's atmosphere, with no other changes, will make the planet's surface warmer; greenhouse gases create a natural greenhouse effect without which temperatures on Earth would be an estimated 30 °C (54 °F) lower, and the Earth uninhabitable. It is therefore not correct to say that there is a debate between those who "believe in" and "oppose" the theory that adding carbon dioxide or methane to the Earth's atmosphere will, absent any mitigating actions or effects, result in warmer surface temperatures on Earth. Rather, the debate is about what the net effect of the addition of carbon dioxide and methane will be, when allowing for compounding or mitigating factors.
One example of an important feedback process is ice-albedo feedback.[2] The increased CO2 in the atmosphere warms the Earth's surface and leads to melting of ice near the poles. As the ice melts, land or open water takes its place. Both land and open water are on average less reflective than ice, and thus absorb more solar radiation. This causes more warming, which in turn causes more melting, and the cycle continues.
Due to the thermal inertia of the Earth's oceans and slow responses of other indirect effects, the Earth's current climate is not in equilibrium with the forcing imposed by increased greenhouse gases. Climate commitment studies indicate that, even if greenhouse gases were stabilized at present day levels, a further warming of perhaps 0.5 °C to 1.0 °C (0.9 to 1.8 °F) would still occur.
Greenhouse gases in the atmosphere
Greenhouse gases are transparent to shortwave radiation from the sun, the main source of heat on the Earth. However, they absorb some of the longer infrared radiation emitted by the Earth, thereby reducing radiational cooling and hence raising the temperature of the Earth. How much they warm the world by is shown in their global warming potential. The measure of the response to increased GHGs, and other anthropogenic and natural climate forcings is climate sensitivity. It is found by observational and model studies.[6] This sensitivity is usually expressed in terms of the temperature response expected from a doubling of CO2 in the atmosphere. The current literature estimates sensitivity in the range of 1.5 to 4.5 °C (2.7 to 8.1 °F).
The atmospheric concentrations of carbon dioxide and methane have increased by 31% and 149% respectively above pre-industrial levels since 1750. This is considerably higher than at any time during the last 650,000 years, the period for which reliable data has been extracted from ice cores. From less direct geological evidence it is believed that carbon dioxide values this high were last attained 40 million years ago.[citation needed] About three-quarters of the anthropogenic (man-made) emissions of carbon dioxide to the atmosphere during the past 20 years are due to fossil fuel burning. The rest of the anthropogenic emissions are predominantly due to land-use change, especially deforestation.[7]
The longest continuous instrumental measurement of carbon dioxide mixing ratios began in 1958 at Mauna Loa. Since then, the annually averaged value has increased monotonically by approximately 21% from the initial reading of 315 ppmv, as shown by the Keeling curve, to over 380 ppmv in 2006.[8][9] The monthly CO2 measurements display small seasonal oscillations in an overall yearly uptrend; each year's maximum is reached during the northern hemisphere's late spring, and declines during the northern hemisphere growing season as plants remove some CO2 from the atmosphere.
Methane, the primary constituent of natural gas, enters the atmosphere both from biological production and leaks from natural gas pipelines and other infrastructure. Some biological sources are natural, such as termites or forests,[10][11][12] but others have been increased or created by agricultural activities such as the cultivation of rice paddies.[13] Recent evidence indicates that methane concentrations have begun to stabilize, perhaps due to reductions in leakage from fuel transmission and storage facilities.[14]
Future carbon dioxide levels are expected to continue rising due to ongoing fossil fuel usage. The rate of rise will depend on uncertain economic, sociological, technological, and natural developments. The IPCC Special Report on Emissions Scenarios gives a wide range of future carbon dioxide scenarios,[15] ranging from 541 to 970 parts per million by the year 2100. Fossil fuel reserves are sufficient to reach this level and continue emissions past 2100, if coal and tar sands are extensively used.[citation needed]
Carbon sink ecosystems (forests and oceans)[16] are being degraded by pollutants.[17] Degradation of major carbon sinks results in higher atmospheric carbon dioxide levels.
Globally, the majority of anthropogenic greenhouse gas emissions arise from fuel combustion. The remainder is accounted for largely by "fugitive fuel" (fuel consumed in the production and transport of fuel)[verification needed] , emissions from industrial processes (excluding fuel combustion), and agriculture: these contributed 5.8%, 5.2% and 3.3% respectively in 1990.[citation needed] Current figures are broadly comparable.[18] Around 17% of emissions are accounted for by the combustion of fuel for the generation of electricity. A small percentage of emissions come from natural and anthropogenic biological sources, with approximately 6.3% derived from agriculturally produced methane and nitrous oxide.[citation needed]
Positive feedback effects, such as the expected release of methane from the melting of permafrost peat bogs in Siberia (possibly up to 70,000 million tonnes), may lead to significant additional sources of greenhouse gas emissions.[19] Note that the anthropogenic emissions of other pollutants—notably sulfate aerosols—exert a cooling effect; this partially accounts for the plateau/cooling seen in the temperature record in the middle of the twentieth century,[20] though this may also be due to intervening natural cycles.
Other hypotheses
The extent of the scientific consensus on global warming—that "most of the observed warming over the last 50 years is likely to have been attributable to human activities"[1]—has been investigated: In the journal Science in December 2004, Naomi Oreskes published a study of the abstracts of the 928 refereed scientific articles in the ISI citation database identified with the keywords "global climate change" and published from 1993–2003. This study concluded that 75% of the 928 articles either explicitly or implicitly accepted the consensus view—the remainder of the articles covered methods or paleoclimate and did not take any stance on recent climate change. The study did not report how many of the 928 abstracts explicitly accepted the hypothesis of human-induced warming, but none of the 928 articles surveyed accepted any other hypothesis.[3]
In 2007, the Intergovernmental Panel on Climate Change concluded that human actions are "very likely" the cause of global warming, meaning a 90% or greater probability.[21]
Contrasting with the consensus view, other hypotheses have been proposed to explain all or most of the observed increase in global temperatures. Some of these hypotheses include:
- The warming is within the range of natural variation.
- The warming is a consequence of coming out of a prior cool period, namely the Little Ice Age.
- The warming is primarily a result of variances in solar irradiance, possibly via modulation of cloud cover.[4] It is similar in concept to the operating principles of the Wilson cloud chamber, but on a global scale where earth's atmosphere acts as the cloud chamber and the cosmic rays catalyze the production of cloud condensation nuclei.
- The observed warming actually reflects the Urban Heat Island, as most readings are done in heavily populated areas which are expanding with growing population.[5]
The solar variation theory
Modeling studies reported in the IPCC Third Assessment Report (TAR) did not find that changes in solar forcing were needed in order to explain the climate record for the last four or five decades [6]. These studies found that volcanic and solar forcings may account for half of the temperature variations prior to 1950, but the net effect of such natural forcings has been roughly neutral since then [7]. In particular, the change in climate forcing from greenhouse gases since 1750 was estimated to be eight times larger than the change in forcing due to increasing solar activity over the same period [8].
Since the TAR, some studies (Lean et al., 2002, Wang et al., 2005) have suggested that changes in irradiance since pre-industrial times are less by a factor of 3 to 4 than in the reconstructions used in the TAR (e.g. Hoyt and Schatten, 1993, Lean, 2000.). Other researchers (e.g. Stott et al. 2003 [9]) believe that the effect of solar forcing is being underestimated and propose that solar forcing accounts for 16% or 36% of recent greenhouse warming. Others (e.g. Marsh and Svensmark 2000 [10]) have proposed that feedback from clouds or other processes enhance the direct effect of solar variation, which if true would also suggest that the effect of solar variability was being underestimated. In general the level of scientific understanding of the contribution of variations in solar irradiance to historical climate changes is "very low" [11].
The present level of solar activity is historically high. Solanki et al. (2004) suggest that solar activity for the last 60 to 70 years may be at its highest level in 8,000 years; Muscheler et al. disagree, suggesting that other comparably high levels of activity have occurred several times in the last few thousand years [12]. Solanki concluded based on their analysis that there is a 92% probability that solar activity will decrease over the next 50 years. In addition, researchers at Duke University (2005) have found that 10–30% of the warming over the last two decades may be due to increased solar output [13]. In a review of existing literature, Foukal et al. (2006) determined both that the variations in solar output were too small to have contributed appreciably to global warming since the mid-1970s and that there was no evidence of a net increase in brightness during this period. [14]
Attributed and Expected effects
Some effects on both the natural environment and human life are already being attributed at least in part to global warming. Glacier retreat, ice shelf disruption such as of the Larsen Ice Shelf , sea level rise, changes in rainfall patterns, increased intensity and frequency of hurricanes and extreme weather events, are being attributed at least in part to global warming. While changes are expected for overall patterns, intensity, and frequencies, it is difficult or impossible to attribute specific events (such as Hurricane Katrina) to global warming.
Some anticipated effects include sea level rise of 110 to 770 mm by 2100 [22], repercussions to agriculture, possible slowing of the thermohaline circulation, reductions in the ozone layer, increased intensity and frequency of hurricanes and extreme weather events, lowering of ocean pH, the spread of diseases such as malaria and dengue fever, and mass extinction events.
The extent and probability of these consequences is a matter of considerable uncertainty. A summary of probable effects and recent understanding can be found in the report of the IPCC Working Group II [15].
Mitigation
The consensus among climate scientists that global temperatures will continue to increase has led nations, states, corporations and individuals to implement actions to try to curtail global warming. Some of the strategies that have been proposed for mitigation of global warming include development of new technologies; carbon offsets; renewable energy such as biodiesel, wind power, and solar power; nuclear power; electric or hybrid automobiles; fuel cells; energy conservation; carbon taxes; improving natural carbon dioxide sinks; deliberate production of sulfate aerosols, which produce a cooling effect on the Earth; population control; and carbon capture and storage. Many environmental groups encourage individual action against global warming, often aimed at the consumer, and there has been business action on climate change.
The world's primary international agreement on combating global warming is the Kyoto Protocol. The Kyoto Protocol is an amendment to the United Nations Framework Convention on Climate Change (UNFCCC). Countries that ratify this protocol commit to reduce their emissions of carbon dioxide and five other greenhouse gases, or engage in emissions trading if they maintain or increase emissions of these gases.
Climate models
Scientists have studied global warming with computer models of the climate (see below). Before the scientific community accepts a climate model, it has to be validated against observed climate variations. As of 2006, models with sufficiently high resolution are able to successfully simulate summer and winter differences, the North Atlantic Oscillation[16], and El Niño [17]. All validated current models predict that the net effect of adding greenhouse gases will be a warmer climate in the future. However, even when the same assumptions of fossil fuel consumption and CO2 emission are used, the amount of predicted warming varies between models and there still remains a considerable range of climate sensitivity predicted by the models which survive these tests. Part of the technical summary of the IPCC TAR includes a recognition of the need to quantify this uncertainty: "In climate research and modeling, we should recognize that we are dealing with a coupled non-linear system, and therefore that the prediction of a specific future climate is not possible. Rather the focus must be on the probability distribution of the system's possible future states by the generation of ensembles of model solutions." (See [18], page 78.) An example of a study which aims to do this is the Climateprediction.net project; their methodology is to investigate the range of climate sensitivities predicted for the 21st century by those models which have first been shown to give a reasonable simulation of late 20th century climate change.
As noted above, climate models have been used by the IPCC to anticipate a warming of 1.4 °C to 5.8 °C (2.5 °F–10.4 °F) between 1990 and 2100 [19]. They have also been used to help investigate the causes of recent climate change by comparing the observed changes to those that the models predict from various natural and human derived forcing factors. In addition to having their own characteristic climate sensitivity, models have also been used to derive independent assessments of climate sensitivity.
Climate models can produce a good match to observations of global temperature changes over the last century [20]. These models do not unambiguously attribute the warming that occurred from approximately 1910 to 1945 to either natural variation or human effects; however, they suggest that the warming since 1975 is dominated by man-made greenhouse gas emissions. Adding simulation of the carbon cycle to the models generally shows a positive feedback, though this response is uncertain (under the A2 SRES scenario, responses vary between an extra 20 and 200 ppm of CO2). Some observational studies also show a positive feedback [21].
Uncertainties in the representation of clouds are a dominant source of uncertainty in existing models, despite clear progress in modeling of clouds [22]. There is also an ongoing discussion as to whether climate models are neglecting important indirect and feedback effects of solar variability. Further, all such models are limited by available computational power, so that they may overlook changes related to small-scale processes and weather (e.g. storm systems, hurricanes). However, despite these and other limitations, the IPCC considered climate models "to be suitable tools to provide useful projections of future climates" [23].
In December, 2005 Bellouin et al. suggested in Nature that the reflectivity effect of airborne pollutants was about double that previously expected, and that therefore some global warming was being masked. If supported by further studies, this would imply that existing models under-predict future global warming. [24]
Other related issues
Ocean acidification
Increased atmospheric carbon dioxide increases the amount of CO2 dissolved in the oceans [25]. Unfortunately, carbon dioxide gas dissolved in the ocean reacts with water to form carbonic acid resulting in ocean acidification. Since biosystems are adapted to a narrow range of pH this is a serious concern directly driven by increased atmospheric CO2 and not global warming.
Relationship to ozone depletion
Although they are often interlinked in the mass media, the connection between global warming and ozone depletion is not strong. There are five areas of linkage:
- The same carbon dioxide radiative forcing that produces near-surface global warming is expected (perhaps somewhat surprisingly) to cool the stratosphere. This, in turn, would lead to a relative increase in ozone depletion and the frequency of ozone holes.
- Conversely, ozone depletion represents a radiative forcing of the climate system. There are two opposed effects: 1) reduced ozone allows more solar radiation to penetrate, thus warming the troposphere instead of the stratosphere. 2) The resulting colder stratosphere emits less long-wave radiation down to the troposphere, thus having a cooling effect. Overall, the cooling dominates: the IPCC concludes that observed stratospheric O3 losses over the past two decades have caused a negative forcing of the surface-troposphere system [26] of about −0.15 ± 0.10 W/m² [27].
- One of the strongest predictions of the greenhouse effect theory is that the stratosphere will cool. Although this cooling has been observed, it is not trivial to separate the effects of changes in the concentration of greenhouse gases and ozone depletion since both will lead to cooling. However, this can be done by numerical stratospheric modeling. Results from the NOAA Geophysical Fluid Dynamics Laboratory show that above 20 km, the greenhouse gases dominate the cooling. [28]
- Ozone depleting chemicals are also greenhouse gases, representing 0.34 ±0.03 W/m², or about 14% of the total radiative forcing from well-mixed greenhouse gases [29].
- Decreased ozone leads to an increase in ultraviolet levels. Ultraviolet radiation may be responsible for the death of ocean algae, which operate as a carbon dioxide sink in the ocean. Increased UV, therefore, may lead to a decrease in carbon dioxide uptake, thereby raising global carbon dioxide levels. [30]
Relationship to global dimming
Some scientists now consider that the effects of global dimming (the reduction in sunlight reaching the surface of the planet, possibly due to aerosols) may have masked some of the effect of global warming[citation needed]. If this is so, the indirect aerosol effect is stronger than previously believed, which would imply that the climate sensitivity to greenhouse gases is also stronger.
Pre-human global warming
The Earth has experienced natural global warming and cooling many times in the past, and can offer useful insights into present processes. It is thought by some geologists[citation needed] that a rapid buildup of greenhouse gases caused the Earth to experience global warming in the early Jurassic period, with average temperatures rising by 5 °C (9.0 °F). Research by the Open University published in Geology (32: 157–160, 2004 [31]) indicates that this caused the rate of rock weathering to increase by 400%. As such weathering locks away carbon in calcite and dolomite, carbon dioxide levels dropped back to normal over roughly the next 150,000 years.
Sudden releases of methane from clathrate compounds (the Clathrate Gun Hypothesis) have been hypothesized as a cause for other past global warming events, including the Permian-Triassic extinction event and the Paleocene-Eocene Thermal Maximum. However, warming at the end of the last glacial period is thought not to be due to methane release [32]. Instead, natural variations in the Earth's orbit (Milankovitch cycles) are believed to have triggered the retreat of ice sheets by changing the amount of solar radiation received at high latitude and led to deglaciation.
The greenhouse effect is also invoked to explain how the Earth made it out of the Snowball Earth period 600 million years ago. During this period all silicate rocks were covered by ice, thereby preventing them from combining with atmospheric carbon dioxide. The atmospheric carbon dioxide level gradually increased until it reached a level that could have been as much as 350 times the current level. At this point temperatures were raised enough to melt the ice, even though the reflective ice surfaces had been reflecting most sunlight back into space. Increased amounts of rainfall would quickly wash the carbon dioxide out of the atmosphere, and thick layers of abiotic carbonate sediment have been found on top of the glacial rocks from this period.
Using paleoclimate data for the last 500 million years Veizer et al. (2000, Nature 408, pp. 698–701) concluded that long-term temperature variations are only weakly related to carbon dioxide variations. Most paleoclimatologists believe this is because other factors, such as continental drift and mountain building have larger effects in determining very long term climate. However, Shaviv and Veizer (2003, [33]) proposed that the biggest long-term influence on temperature is actually the solar system's motion around the galaxy, and the ways in which this influences the atmosphere by altering the flux of cosmic rays received by the Earth. Afterwards, they argued that over geologic times a change in carbon dioxide concentrations comparable to doubling pre-industrial levels, only results in about 0.75 °C (1.3 °F) warming rather than the usual 1.5–4.5 °C (2.7–8.1 °F) reported by climate models [34]. They acknowledge (Shaviv and Veizer 2004) however that this conclusion may only be valid on multi-million year time scales when glacial and geological feedback have had a chance to establish themselves. Rahmstorf et al. 2004 [35] argue that Shaviv and Veizer arbitrarily tuned their data, and that their conclusions are unreliable.
Pre-industrial global warming
Paleoclimatologist William Ruddiman has argued [36] that human influence on the global climate began around 8,000 years ago with the start of forest clearing to provide land for agriculture and 5,000 years ago with the start of Asian rice irrigation. He contends that forest clearing explains the rise in carbon dioxide levels in the current interglacial that started 8,000 years ago, contrasting with the decline in carbon dioxide levels seen in the previous three interglacials. He further contends that the spread of rice irrigation explains the breakdown in the last 5,000 years of the correlation between the Northern Hemisphere solar radiation and global methane levels, which had been maintained over at least the last eleven 22,000-year cycles. Ruddiman argues that without these effects, the Earth would be nearly 2 °C cooler and "well on the way" to a new ice age. Ruddiman's interpretation of the historical record, with respect to the methane data, has been disputed.[37]
Recent findings, developments
International organizations
In February 2007, the U.N. Intergovernmental Panel on Climate Change (IPCC) released a summary report for policymakers stating that it is "very likely" (>90% assessed likelihood) that most of the observed increase in globally averaged temperatures is caused by human activity.
The IPCC's position on hurricanes was a marked departure from a November 2006 statement by the World Meteorological Organization, which helped found the IPCC. The meteorological organization, after contentious debate, said it could not link past stronger storms to global warming. The debate about whether stronger hurricanes were linked to global warming was one division in the scientific community, which was otherwise largely united in agreeing that mankind is behind recent global warming. [23][citation needed]
Notes
- ^ a b "Climate Change 2007: The Physical Science Basis - Summary for Policymakers" (PDF). Intergovernmental Panel on Climate Change. 2007. Retrieved 2007-02-02.
{{cite web}}
: Check date values in:|year=
(help)CS1 maint: year (link) - ^ Fourth Assessment Report Summary for Policymakers, p. 3.
- ^ "United Nations Framework Convention on Climate Change, Article I". United Nations. Retrieved 2007-01-15.
- ^ "Goddard Institute for Space Studies, GISS Surface Temperature Analysis". NASA Goddard Institute for Space Studies. 2006-01-12. Retrieved 2007-01-17.
{{cite web}}
: Check date values in:|date=
(help) - ^ "Real Climate, 2005 temperatures". RealClimate. 2007-12-15. Retrieved 2007-01-17.
{{cite web}}
: Check date values in:|date=
(help) - ^ Gregory, J. M. (2002-11-15). "An Observationally Based Estimate of the Climate Sensitivity" (PDF). Journal of Climate. 15 (22): 3117–21. Retrieved 2007-01-18.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ "Climate Change 2001: Working Group I: The Scientific Basis, Part 6". Intergovernmental Panel on Climate Change. 2001. Retrieved 2007-01-18.
{{cite web}}
: Check date values in:|year=
(help)CS1 maint: year (link) - ^ "Earth System Research Laboratory, Trends in Atmospheric Carbon Dioxide". National Oceanic & Atmospheric Administration. Retrieved 2007-01-18.
- ^ "Earth System Research Laboratory, NOAA/ESRL Global Monitoring Division". National Oceanic & Atmospheric Administration. Retrieved 2007-01-18.
- ^ Global warming - the blame is not with the plants
- ^ RealClimate, "Scientists baffled!"
- ^ Hirsch, Tim (2006-01-11). "Plants revealed as methane source". BBC News. Retrieved 2007-01-18.
{{cite news}}
: Check date values in:|date=
(help); Cite has empty unknown parameter:|coauthors=
(help) - ^ Climate Change 2001: Working Group I: The Scientific Basis, "Estimates of the global methane budget (in Tg(CH4)/yr) from different sources compared with the values adopted for this report (TAR)."
- ^ Physorg.com, "Level of important greenhouse gas has stopped growing"
- ^ Climate Change 2001: Working Group I: The Scientific Basis, 3.7.3.3 SRES scenarios and their implications for future CO2 concentration
- ^ OceanOutfall Community Website, Information
- ^ OceanOutfall Community Website, Los Angeles Times: Ocean Report
- ^ UNFCC, Greenhouse Gas Inventory Data
- ^ Sample, Ian (2005-08-11). "Warming Hits 'Tipping Point'". The Guardian. Retrieved 2007-01-18.
{{cite news}}
: Check date values in:|date=
(help); Cite has empty unknown parameter:|coauthors=
(help) - ^ Climate Change 2001: Working Group I: The Scientific Basis, Chapter 12
- ^ "Warming 'very likely' human-made". BBC News. BBC. 2007-02-01. Retrieved 2007-02-01.
{{cite news}}
: Check date values in:|date=
(help) - ^ "Climate Change 2001: The Scientific Basis". Retrieved 2005-12-19.
- ^ Warming 'very likely' due to man, report to say, Associated Press, 2/1/07.
References
- Amstrup, Steven (2006). "Recent observations of intraspecific predation and cannibalism among polar bears in the southern Beaufort Sea". doi:10.1007/s00300-006-0142-5.
{{cite journal}}
: Cite journal requires|journal=
(help); Unknown parameter|Journal=
ignored (|journal=
suggested) (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - Association of British Insurers Financial Risks of Climate Change, June 2005, (PDF) Accessed 7 January 2006
- Barnett, T. P., Adam, J. C., and Lettenmaier, D. P. (2005). "Potential impacts of a warming climate on water availability in snow-dominated regions". Nature. 438: 303–309.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) [38] - Behrenfeld, M.J., O'Malley, R.T., Siegel, D.A., McClain, C.R., Sarmiento, J. L., Feldman, G. C., Milligan, A.G., Falkowski, P. G., Letelier, R. M., and Boss, E.S. (2006). "Climate-driven trends in contemporary ocean productivity". Nature. 444: 752–755.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) [39]
- Choi, O. and A. Fisher (2003) "The Impacts of Socioeconomic Development and Climate Change on Severe Weather Catastrophe Losses: Mid-Atlantic Region (MAR) and the U.S." Climate Change, vol. 58 pp. 149 [40]
- Dyurgerov, Mark B (2005). Glaciers and the Changing Earth System: a 2004 Snapshot. Institute of Arctic and Alpine Research, Occasional Paper #58.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) [41] - Ealert Global warming - the blame is not with the plants
- Emanuel, K.A. (2005) "Increasing destructiveness of tropical cyclones over the past 30 years." Nature 436, pp. 686–688. ftp://texmex.mit.edu/pub/emanuel/PAPERS/NATURE03906.pdf
- James Hansen, Reto Ruedy, Larissa Nazarenko, Makiko Sato, Josh Willis, Anthony DelGenio, Dorothy Koch, Andrew Lacis, Ken Lo, Surabi Menon, Tica Novakov, Judith Perlwitz, Gary Russell, Gavin A. Schmidt, Nicholas Tausnev (2005). "Earth's Energy Imbalance: Confirmation and Implications". Science. doi:10.1126/science.1110252.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Hinrichs K.U., Hmelo L. & Sylva S. (2003). "Molecular Fossil Record of Elevated Methane Levels in Late Pleistocene Coastal Waters". Science. 299 (5610): 1214–1217. doi:10.1126/science.1079601.
- Hirsch, Tim (11 January 2006). "Plants revealed as methane source". BBC.
{{cite news}}
: Check date values in:|date=
(help) - Hoyt, D.V., and K.H. Schatten (1993). "A discussion of plausible solar irradiance variations, 1700–1992". J. Geophys. Res. 98: 18895–18906.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) [42] - Kennett J. P., Cannariato K. G., Hendy I. L. & Behl R. J.American Geophysical Union, Special Publication, Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. 54, (2003). Questions about Clathrate Gun Hypothesis (source of information)
- Lean, J.L., Y.M. Wang, and N.R. Sheeley (2002). "The effect of increasing solar activity on the Sun's total and open magnetic flux during multiple cycles: Implications for solar forcing of climate". Geophys. Res. Lett. 29 (24): 2224. doi:10.1029/2002GL015880.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)(online version requires registration) - McLaughlin, Joseph B. (October 6, 2005). "Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters" (PDF). New England Journal of Medicine. 353 (14). New England Medical Society: 1463–1470. Retrieved July 18, 2006.
{{cite journal}}
: Check date values in:|accessdate=
and|date=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help)(online version requires registration) - Raimund Muscheler, Fortunat Joos, Simon A. Müller and Ian Snowball (2005). "Climate: How unusual is today's solar activity?". Nature. 436: E3 – E4. doi:10.1038/nature04045.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Oerlemans, J (2005). "Extracting a Climate Signal from 169 Glacier Records". Science. 308 (5722): 675–677. doi:10.1126/science.1107046.
- Naomi Oreskes, 2004 Beyond the Ivory Tower: The Scientific Consensus on Climate Change - Retrieved December 8, 2004. Also available as a 1 page PDF file Reviewed 928 refereed scientific articles identified with the keywords "global climate change" and published 1993-2003—concluded that 75% of the articles explicitly or implicitly accepted the scientific consensus. The remainder of the articles did not take any stance on recent climate change.
- Purse, Bethan V. (February 2005). "Climate change and the recent emergence of bluetongue in Europe". Nature Reviews Microbiology. 3 (2): 171–181. doi:10.1038/nrmicro1090.
{{cite journal}}
:|access-date=
requires|url=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - RealClimate Scientists Baffled
- Revkin, Andrew C (2005). "Rise in Gases Unmatched by a History in Ancient Ice". New York Times. "Shafts of ancient ice pulled from Antarctica's frozen depths show that for at least 650,000 years three important heat-trapping greenhouse gases never reached recent atmospheric levels caused by human activities, scientists are reporting today." (November 25 2005) [43]
- Ruddiman, William F. (2001). Earth's Climate Past and Future. New York: Princeton University Press. ISBN 0-7167-3741-8. [44]
- Ruddiman, William F. (2005). Plows, Plagues, and Petroleum: How Humans Took Control of Climate. New Jersey: Princeton University Press. ISBN 0-691-12164-8.
- Shaviv and Veizer (2004). "Forum: Comment". Eos. 85 (48): 510–511. [45]
- Smith, T.M. and R.W. Reynolds, 2005: A global merged land and sea surface temperature reconstruction based on historical observations (1880–1997). J. Climate, 18, 2021–2036.
- S.K. Solanki, I.G. Usoskin, B. Kromer, M. Schussler, J. Beer (2004). "Unusual activity of the Sun during recent decades compared to the previous 11,000 years". Nature. 431: 1084–1087. doi:10.1038/nature02995.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - S. K. Solanki, I. G. Usoskin, B. Kromer, M. Schüssler and J. Beer (2005). "Climate: How unusual is today's solar activity? (Reply)". Nature. 436: E4 – E5. doi:10.1038/nature04046.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Sowers T. (2006). "Late Quaternary Atmospheric CH4 Isotope Record Suggests Marine Clathrates Are Stable". Science. 311 (5762): 838–840. doi:10.1126/science.1121235.
- Svensmark, Henrik (2006). "Experimental evidence for the role of ions in particle nucleation under atmospheric conditions". Proceedings of the Royal Society A. 462. FirstCite Early Online Publishing. doi:10.1098/rspa.2006.1773.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)(online version requires registration)
- UNEP summary (2002) Climate risk to global economy, Climate Change and the Financial Services Industry, United Nations Environment Programme Finance Initiatives Executive Briefing Paper (UNEP FI) (PDF) Accessed 7 January 2006
- K. M. Walter, S. A. Zimov, J. P. Chanton, D. Verbyla and F. S. Chapin (2006). "Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming". Nature. 443: 71–75. doi:10.1038/nature05040.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - Wang, Y.M., J.L. Lean, and N.R. Sheeley (2005). "Modeling the sun's magnetic field and irradiance since 1713". Astrophysical Journal. 625: 522–538.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) [46] - Wired Careful Where You Put That Tree
See also
Wikinews Scientific assessment
Climate science
Fossil fuel availability Opinion and controversy
|
Politics of global warming Remediation and regulation
Miscellaneous Related topics
|
External links
Scientific
- Global Warming and Ozone Depletion Freeview video interview with F.Sherwood Rowland (Nobel Prize for work on Ozone), by the Vega Science Trust.
- Global Warming Information from the Ocean & Climate Change Institute, Woods Hole Oceanographic Institution
- Intergovernmental Panel on Climate Change (IPCC)
- [47] Draft of 4th IPCC Report 2007 (news story)
- IPCC Third Assessment Report published in 2001
- Climate Change 2001: Working Group II: Impacts, Adaptation and Vulnerability
- A summary of the above IPCC report - by GreenFacts
- NASA's Global Hydrology and Climate Center
- Mauna Loa Observatory, Hawaii - Latest CO2 Measurements and Data
- Maps & Graphics on Global Warming from the UN Environment Programme GRID-Arendal
- NOAA's Global Warming FAQ
- RealClimate - A group blog of climate scientists
- National Center for Atmospheric Research - Overview of NCAR research on climate change
- Potsdam Institute for Climate Impact Research
- Discovery of Global Warming — An extensive introduction to the topic and the history of its discovery
- Introduction to climate change: Lecture notes for meteorologists (World Meteorological Organization) (PDF)
- Pew Center on Global Climate Change — basic science
- NOAA ESRL Global Monitoring Division
- Global Warming Site, U.S. Environmental Protection Agency
- Final Report of U.S. Climate Change Science Program
- Melting lakes in Siberia emit greenhouse gas
- Danish National Space Centre: SKY Experiment
- Climate Change: Discovery of Global Warming
- IPCC report Climate Change 2007: The Physical Science Basis, Feb 2007
Polar ice-related links
- How rapidly is permafrost changing? What are the impacts of these changes? from *N.O.A.A.
- Melting Russian Permafrost Could Accelerate Global Warming - ENS (7 September 2006)
- Experts warn North Pole will be 'ice free' by 2040
Educational
- The EdGCM (Educational Global Climate Modelling) Project free research-quality simulation for students, educators, and scientists alike, with a user-friendly interface that runs on desktop computers
Other
- Extended video interview with Al Gore - Jonathan Freedland of The Guardian sits down for an extended interview with Al Gore about Global Warming.
- Science and Technology Librarianship: Global Warming and Climate Change Science — Extensive commented list of Internet resources — Science and Technology Sources on the Internet.
- Union of Concerned Scientists Global Warming page
- Watch and read 'Tipping Point', Australian science documentary about effects of global warming on rare, common, and endangered wildlife
- Summary by "Physicians and Scientists for Responsible Application of Science and Technology"
- Newest reports on US EPA website
- The Discovery of Global Warming from historian Spencer Weart, Director of the Center for History of Physics of the American Institute of Physics (AIP).
- IPS Inter Press Service - Independent news on global warming and its consequences.
- An online magazine discussing public relations controversies associated with global warming.
- Boffey, Philip (July 4 2006). "Talking Points: The Evidence for Global Warming". New York Times.
{{cite news}}
: Check date values in:|date=
(help); Cite has empty unknown parameter:|coauthors=
(help) - Borenstein, Saul (August 2 2006). "Hot Summer Nights Getting Hotter". LiveScience.com. Retrieved 2006-08-06.
{{cite news}}
: Check date values in:|date=
(help)