2022 in archosaur paleontology: Difference between revisions
Perhaps so, but it hasn't been published yet, so it doesn't belong here. Undid revision 1081682714 by 2604:CB00:110A:DB00:D9C:2CC8:309D:1327 (talk) |
Undid revision 1081683271 by PaleoNerd1905 (talk) |
||
Line 591: | Line 591: | ||
| |
| |
||
A vulture; a species of ''Neophron'' ([[Egyptian vulture]]). |
A vulture; a species of ''Neophron'' ([[Egyptian vulture]]). |
||
⚫ | |||
|- |
|||
|''[[Styginetta]]'' |
|||
|Gen. et sp. nov |
|||
|Valid |
|||
|Tom Stidham |
|||
|[[Late Cretaceous]]([[Maastrichtian]]) to [[Paleocene]]([[Danian]]) |
|||
|[[Hell Creek Formation]] |
|||
|[[United States]]([[Montana]]) |
|||
|A [[Presbyornithidae|Presbyornithid]], and one of the few genera of birds to survive the [[Cretaceous–Paleogene extinction event]]. The type species is ''S. lofgreni.'' |
|||
| |
| |
||
|- |
|- |
||
Line 610: | Line 620: | ||
A bird with morphology most similar to that of [[mousebird]]s, assigned to the new family [[Zealandornithidae]] of uncertain affinities but likely belonging to [[Telluraves]]. The type species is ''Z. relictus''. |
A bird with morphology most similar to that of [[mousebird]]s, assigned to the new family [[Zealandornithidae]] of uncertain affinities but likely belonging to [[Telluraves]]. The type species is ''Z. relictus''. |
||
| |
| |
||
⚫ | |||
|} |
|} |
||
Revision as of 00:17, 9 April 2022
| |||
---|---|---|---|
+... |
This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2022, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2022.
Pseudosuchians
New pseudosuchian taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Confractosuchus[1] | Gen. et sp. nov | In press | White et al. | Late Cretaceous (Cenomanian) | Winton Formation | Australia | A eusuchian. The type species is C. sauroktonos. | |
Gen. et sp. nov | Valid | Marinho et al. | Late Cretaceous | Uberaba Formation | Brazil | A notosuchian crocodylomorph. The type species is E. viridi. Announced in 2021; the final article version was published in 2022. |
||
Gen. et sp. nov | Iijima et al. | Holocene | China | A member of the family Gavialidae with a mosaic of gavialine and tomistomine features across the skeleton. The type species is H. sinensis. |
||||
Gen. et sp. nov | Valid | Butler et al. | Middle Triassic | Manda Beds | Tanzania | An early diverging pseudosuchian of uncertain affinities. The type species is M. ruhuhu. |
||
Yanjisuchus[5] | Gen. et sp. nov | Valid | Rummy et al. | Cretaceous (Albian–Cenomanian) | Longjing Formation | China | A paralligatorid crocodyliform. The type species is Y. longshanensis. Announced in 2021; the final article version was published in 2022. |
General pseudosuchian research
- A study on the mandible embryogenesis in extant caimans, and on its implications for the knowledge of the evolution of postdentary lower jaw of pseudosuchians, is published by Bona et al. (2022).[6]
- Revision of Tsylmosuchus donensis and Scythosuchus basileus is published by Sennikov (2022), who interprets the latter taxon as a junior synonym of the former one, and interprets T. donensis as a likely member of the family Ctenosauriscidae.[7]
- Partial maxilla of a basal loricatan is described from the Upper Triassic (Carnian) lower Candelária Sequence of the Hyperodapedon Assemblage Zone (Brazil) by Damke et al. (2022), expanding known record of loricatans in this unit.[8]
- A study aiming to model to the likely gait of Batrachotomus kupferzellensis is published by Polet & Hutchinson (2022).[9]
Aetosaur research
- A study on the microstructure of the humerus, femur and tibia of Aetosauroides scagliai, and on its implications for the knowledge of the paleobiology of this aetosaur, is published by Ponce, Desojo & Cerda (2022).[10]
Crocodylomorph research
- Review of the type material of the crocodylomorph ichnotaxon Crocodylopodus meijidei from the Berriasian of Spain, and a study on the locomotion of the trackmaker, is published by Castanera et al. (2022).[11]
- A study on the phylogenetic relationships of neosuchians and on timing of the origination of key clades in neosuchian evolution is published by Groh et al. (2022).[12]
- A study on the phylogenetic affinities of Portugalosuchus azenhae is published by Darlim et al. (2022).[13]
- Reconstructions of the inner cavities of the holotype skulls of Arenysuchus gascabadiolorum and Agaresuchus subjuniperus are presented by Puértolas-Pascual et al. (2022).[14]
- Redescription of the holotype of Notocaiman stromeri, and a study on its taxonomic status and phylogenetic affinities, is published by Bona et al. (2022).[15]
Non-avian dinosaurs
New dinosaur taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Vila et al. |
A saltasaurine titanosaur. |
|||||
Gen. et sp. nov |
In press |
Dai et al. |
A basal stegosaur. The type species is B. primitivus. |
|||||
Gen. et sp. nov |
In press |
Averianov & Sues |
Late Cretaceous (Turonian) |
An alvarezsaurid theropod. The type species is D. eski. |
||||
Gen. et sp. nov |
In press |
Agnolín et al. |
An abelisaurid theropod. The type species is G. ochoai. |
|||||
Huallasaurus[20] |
Gen. et sp. nov |
Valid |
Rozadilla et al. |
A saurolophine hadrosaurid belonging to the tribe Kritosaurini. The type species is 'Kritosaurus' australis (Bonaparte, 1984). |
||||
Gen. et sp. nov |
Valid |
Mateus & Estraviz-López |
A spinosaurid theropod. |
|||||
Kelumapusaura[20] |
Gen. et sp. nov |
Valid |
Rozadilla et al. |
A saurolophine hadrosaurid belonging to the tribe Kritosaurini. The type species is K. machi. |
||||
Gen. et sp. nov |
Valid |
Rolando et al. |
A titanosaur sauropod. | |||||
Gen. et sp. nov |
Valid |
Ji & Zhang |
A basal member of Iguanodontia. The type species is N. guangxiensis. Announced in 2021; the final article version was published in 2022. |
|||||
Ondogurvel[24] | Gen. et sp. nov | In press | Averianov & Lopatin | Late Cretaceous (Campanian) | Barun Goyot Formation | Mongolia | An alvarezsaurid theropod. The type species is O. alifanovi. | |
Gen. et sp. nov |
Valid |
Pei et al. |
A troodontid theropod. |
|||||
Gen. et sp. nov |
Valid |
Dalman et al. |
Late Cretaceous (latest Campanian–Maastrichtian) |
A chasmosaurine ceratopsid. |
||||
Sp. nov |
In press |
Paul, Persons & Van Raalte |
Late Cretaceous (late Maastrichtian) |
Hell Creek, Lance, Laramie, Arapahoe, McRae?, North Horn?, and Javelina? Formations |
United States |
A tyrannosaurine; a proposed species of Tyrannosaurus. | ||
Sp. nov |
In press |
Paul, Persons & Van Raalte |
Late Cretaceous (late Maastrichtian) |
Hell Creek, Lance, Ferris, Denver, Frenchman, Willow Creek, and Scollard Formations |
Canada |
A tyrannosaurine; a proposed species of Tyrannosaurus. | ||
Gen. et sp. nov |
Valid |
Yao et al. |
An early thyreophoran. The type species is Y. kopchicki. |
General non-avian dinosaur research
- A study on the age of a new sauropod-dominated dinosaur fauna from the Lower Shaximiao Formation in Yunyang (Chongqing, China) is published by Zhou et al. (2022).[29]
- Description of theropod and ornithischian tracks from the Jurassic Imilchil and Isli formations (Morocco), including theropod tracks representing the ichnogenus Changpeipus (otherwise known from abundant occurrences in East Asia, and possibly indicative of faunal exchange between East Asia and northern Africa in the Middle Jurassic), is published by Klein et al. (2022).[30]
- A large dinosaur tracksite preserving theropod tracks and abundant hadrosaurid tracks is described from the Upper Cretaceous (Campanian) Wapiti Formation (Alberta, Canada) by Enriquez et al. (2022), who evaluate the implications of this finding for the knowledge of the paleoecology of dinosaurs known from the Wapiti Formation.[31]
- A study on the calcium isotope variability in tooth enamel of dinosaurs from the Upper Cretaceous Dinosaur Park Formation, Horseshoe Canyon Formation and Scollard Formation (Alberta, Canada), and on its implications for the knowledge of the stability of food web structure of non-avian dinosaur communities in the millions of years preceding the end of the Cretaceous, is published by Martin et al. (2022).[32]
Ornithischian research
- A study on the phylogenetic relationships of the neornithischian dinosaurs commonly referred to as "hypsilophodontids", aiming to determine causes of conflicting placements of these taxa in different phylogenetic analyses, is published by Brown et al. (2022).[33]
- A study aiming to determine whether ornithischian megaherbivores from the upper Oldman Formation (Alberta, Canada) partitioned their niches based on spatial patterns of occupation and resource-use, based on strontium, oxygen and carbon isotope data, is published by Cullen et al. (2022).[34]
Cerapod research
- Description of postcranial material tentatively assigned to Camptosaurus sp. from the Late Jurassic Villar del Arzobispo Formation (Valencia, Spain) is published by Sánchez-Fenollosa et al. (2022)[35]
- Redescription of the holotype of Draconyx loureiroi, including description of previously unreported material, and a study on the phylogenetic affinities of this taxon is published by Rotatori, Moreno-Azanza & Mateus (2022).[36]
- A new specimen of Iguanodon bernissartensis (a partial axial skeleton) is described from the Early Cretaceous (Upper Barremian) Arcillas de Morella Formation (Spain) by Gasulla et al. (2022)[37]
- Description of new fossils of large bodied styracosternans pertaining to two different taxa from the Early Cretaceous El Castellar Formation (Teruel, Spain) is published by García-Cobeña, Verdú,and Cobos (2022), who also describe the first dinosaur tracksite from this formation.[38]
- Fossil material of non-hadrosauriform styracosternans is described from the Lower Cretaceous Khok Kruat Formation by Samathi & Suteethorn (2022), representing the first record of a juvenile iguanodontian co-occurring with an adult (possibly of the same taxon) from Thailand.[39]
- Description of a nearly complete and articulated skeleton of a juvenile hadrosauroid from the Upper Cretaceous Bayan Shireh Formation (Mongolia), distinct from Gobihadros mongoliensis and likely representing a second, previously unknown hadrosauroid taxon from this formation, is published by Averianov, Lopatin & Tsogtbaatar (2022).[40]
- A study on the morphometric changes within the skull and dietary changes during growth of North American hadrosaurids is published by Wyenberg-Henzler, Patterson & Mallon (2022).[41]
- A pathological ulna of a specimen of Amurosaurus riabinini, preserved with a hypertrophied and swollen distal region and with the distal articular surface engulfed within a large overgrowth of newly formed bone, is described from the Maastrichtian Udurchukan Formation (Amur Region, Russia) by Bertozzo et al. (2022), who interpret the bone as still healing prior to the animal's death, with the misalignment of the fracture and the resulting malunion of the two fragments of the bone probably causing the animal to limp and walk on three limbs.[42]
- A study on the taphonomy of a bonebed with fossils of members of the genus Gryposaurus from the lower unit of the Campanian Oldman Formation (Alberta, Canada), and on the bone microstructure of specimens from this bonebed, is published by Scott et al. (2022).[43]
- Description of the skin of a hadrosaurid specimen (probably belonging to the species Edmontosaurus annectens) from the Maastrichtian Frenchman Formation (Saskatchewan, Canada), preserving unique corrugated scales that have not been observed in this species before, is published by Libke et al. (2022).[44]
- A method which can be used to determine the percent vascularity in any given CT slice of the frontoparietal is presented by Nirody et al. (2022), who use this method to study changes of vascularity in the frontoparietal dome of Stegoceras validum during its ontogeny.[45]
- A new articulated skeleton of Yamaceratops dorngobiensis, representing the first substantially complete skeleton and the first known juvenile specimen of this taxon, is described from the Upper Cretaceous (?Santonian-Campanian) Javkhlant Formation (Mongolia) by Son et al. (2022).[46]
- A study on the bone histology of Koreaceratops hwaseongensis is published by Baag & Lee (2022).[47]
- Mallon et al.(2022) redescribe two ceratopsid frills from Canada attributed to Torosaurus (representing the northernmost records of this genus reported to date), and evaluate possible implications of these specimens for determination of the status of Torosaurus as a genus distinct from Triceratops.[48]
- A study on the fenestra perforating the right squamosal of the Triceratops horridus specimen known as Big John is published by D'Anastasio et al. (2022), who interpret this fenestra as the result of a traumatic event, possibly a fight with another Triceratops.[49]
- A study on the hadrosaurid and ceratopsid faunas of the Upper Cretaceous Prince Creek Formation, Cantwell Formation and Chignik Formation (Alaska, United States), and on the possible impact of the climate on differences of relative abundances of hadrosaurids and ceratopsids from these formations, is published by Fiorillo et al. (2022).[50]
Thyreophoran research
- Schade et al. (2022) create digital models of the braincase of Struthiosaurus austriacus, and evaluate the implication of its anatomy for the knowledge of the behavioral capacities of this dinosaur.[51]
- Partial skull of a member or a relative of the genus Kunbarrasaurus is described from the Albian Toolebuc Formation by Frauenfelder et al. (2022), representing the oldest ankylosaurian material from Queensland (Australia) reported to date.[52]
- A description of a partial thyreophoran osteoderm from an Early Jurassic Konservatlagerstätte near Grimmen, Germany is published by Schade & Ansorge (2022).[53]
Saurischian research
Sauropodomorph research
- A study on the shape variation of long bones in limbs of sauropodomorphs, and on its implications for the knowledge of the evolution of the sauropod bauplan, is published by Lefebvre et al. (2022).[54]
- A study on the shape and variation of the anterolateral scar in the femora of Pampadromaeus barberenai and Buriolestes schultzi, and on its implications for the knowledge of the distribution of the anterolateral scar in ornithodirans, is published by Müller (2022).[55]
- Reconstruction of the appendicular musculature of Thecodontosaurus antiquus is presented by Ballell, Rayfield & Benton (2022).[56]
- A new, large sized early sauropodomorph specimen is described from the Late Triassic (Carnian) Santa Maria Fomation (Brazil) by Müller and Garcia (2022) [57]
- Evidence of widespread incompleteness of necks even in best-preserved and best-known sauropod specimens, and of widespread distortion of known sauropod cervical vertebrae, is presented by Taylor (2022).[58]
- A study aiming to determine whether the sauropod tracks from the Kimmeridgian Courtedoux-Tchâfouè track site (Reuchenette Formation, Switzerland) all represent the same ichnogenus and whether there is variation in their morphology, using linear-based and geometric morphometrics methods, is published by Sciscio et al. (2022).[59]
- A study on bony pathologic structures stemming from the pneumatic features in the cervical vertebrae of a diplodocine specimen from the Lower O’Hair Quarry (Morrison Formation; Montana, United States) is published by Woodruff et al. (2022), who diagnose this specimen as likely affected by an avian-like airsacculitis, constituting the first identification of this disease in a non-avian dinosaur specimen.[60]
- A study on the external morphology, internal microanatomy and bone microstructure of the hemispinous processes of the vertebrae from the holotype specimen of Amargasaurus cazaui and an indeterminate dicraeosaurid specimen from the La Amarga Formation (Argentina), aiming to reconstruct soft tissues associated with those processes and to determine their functional significance, is published by Cerda, Novas, Carballido and Salgado (2022).[61]
- Four sauropod ribs preserving evidence of three different pathologies (including osteosclerosis) are described from the Middle Jurassic of Yunyang (China) by Tan et al. (2022).[62]
- A study on the morphology, preservation and taphonomy of the skin of Haestasaurus becklesii, and a review of sauropod skin morphology, is published by Pittman et al. (2022).[63]
- A study on the anatomy and phylogenetic affinities of Ligabuesaurus leanzai, based on data from new postcranial elements assigned to the holotype specimen and from a newly referred specimen, is published by Bellardini et al. (2022).[64]
- Description of teeth of a sauropod belonging to the group Somphospondyli from the Turonian Tamagawa Formation (Japan), and a study on the diet and mastication of this sauropod as inferred from tooth wear, is published by Sakaki et al. (2022).[65]
- A study on the morphological variability of hindlimb bones of titanosaur sauropods from the Lo Hueco Konzentrat-Lagerstätte (Villalba de la Sierra Formation, Spain) is published by Páramo et al. (2022).[66]
- Titanosaur tracks preserving claw impressions are reported from the Anacleto Formation (Argentina) by Tomaselli et al. (2022), who devise a new classification for titanosaur tracks and name the new ichnotaxon Teratopodus malarguensis.[67]
- The first titanosaur nesting site from the Late Cretaceous of Brazil is reported from the Maastrichtian Serra da Galga Formation by Fiorelli et al. (2022).[68]
- A study on the microstructure of axial bones of Austroposeidon magnificus, Gondwanatitan faustoi and Maxakalisaurus topai, and on its implications for the knowledge of growth phases of these sauropods, is published by Brum et al. (2022).[69]
- Curved, pencil-like sauropod teeth from the Upper Cretaceous Bostobe Formation (Kazakhstan) are referred to a representative of the clade Opisthocoelicaudiidae by Averianov & Lopatin (2022).[70]
- A study proposing a method to determine the gait and limb phase of sauropods based on fossil tracksites is published by Lallensack & Falkingham (2022), who interpret their findings as suggestive of diagonal couplet walks, which would have allowed both sides of the body to be supported by the limbs at all times.[71]
Theropod research
- Review of the morphology and distribution of non-feather integumentary structures in non-avialan theropods is published by Hendrickx et al. (2022).[72]
- Description of a small high-density assemblage of theropod tracks from the Cretaceous Haman Formation (South Korea), and a study on the distribution of grallatorid tracks in east Asia, is published by Lockley et al. (2022).[73]
- Trackway produced by a large theropod, probably affected by a foot pathology, is described from the upper Barremian locality of Las Hoyas (La Huérguina Formation, Spain) by Herrera-Castillo et al. (2022).[74]
- Revision of the fossil material of theropods from the Middle to Late Jurassic of the Vaches Noires cliffs (Normandy, France) is published by Monvoisin et al. (2022).[75]
- Revision of theropod teeth from the Campanian site of Laño (Spain), evaluating their implications for the knowledge of diversity and evolutionary history of theropods from the Late Cretaceous of Europe, is published by Isasmendi et al. (2022).[76]
- A study aiming to determine the causes of the shortening of the forelimbs of giant theropods, especially tyrannosaurids, is published by Padian (2022).[77]
- An analysis of the possible aquatic habits of members of Spinosauridae, as well as other non-avian dinosaurs, is published by Fabbri et al., who determine that a high bone density would have allowed for underwater foraging in Spinosaurus and Baryonyx, while Suchomimus was likely better suited for terrestrial wading, despite morphological similarities to Baryonyx.[78]
- Description of the frontal anatomy of Teratophoneus curriei is published by Yun (2022).[79]
- A study on the anatomy of the skull of Qianzhousaurus sinensis is published by Foster et al. (2022).[80]
- Kim et al. (2022) compare a fish centrum found with the holotype of Raptorex kriegsteini with Harenaichthys lui from the Nemegt Formation (Mongolia) and Chinese Xixiaichthys tongxinensis, and interpret their findings as supporting the conclusion that the holotype of R. kriegsteini comes from the Nemegt Formation.[81]
- Description of the neurovascular canals in rostral cranial elements of Tyrannosaurus rex, and a study on the evolution of these canals among Sauropsida and on the possibility of the presence of lips and specialised sensory organs among non-avian theropods, is published by Bouabdellah, Lessner & Benoit (2022).[82]
- The first diagnostic ornithomimid fossils from the upper Maastrichtian Scollard Formation (Alberta, Canada) are described by Nottrodt (2022), extending the stratigraphic ranges of both Ornithomimus and Struthiomimus in Alberta from the upper Campanian Dinosaur Park Formation through to the Scollard Formation, which constitutes more than 10 million years of time.[83]
- Redescription of Parvicursor remotus is published by Averianov & Lopatin (2022), who reinterpret the holotype of this genus as a juvenile and consider Linhenykus monodactylus and Ceratonykus oculatus to be synonymous with it.[84]
- A study on the jaw adductor musculature and bite force of members of Oviraptorosauria is published by Meade & Ma (2022).[85]
- A study on the evolution of the skull morphology of non-avialan paravian theropods is published by Pei & Xu (2022).[86]
- A dromaeosaurid-like sickle claw, similar in some ways to Pyroraptor olympius, is reported from the Grès à Reptiles (France) by Brilhante et al. (2022).[87]
- A study on the phylogenetic relationships of members of Eudromaeosauria is published by Powers et al. (2022), who interpret Acheroraptor temertyorum and Atrociraptor marshalli as members of the Saurornitholestinae.[88]
- New theropod assemblage, including the first records of a large carcharodontosaur allosauroid and of a troodontid maniraptoran in Appalachia reported to date, as well as the earliest occurrence of a tyrannosauroid in Appalachia reported to date, is described from the Cenomanian Lewisville Formation (Woodbine Group; Texas, United States) by Noto et al. (2022).[89]
Birds
New bird taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Worthy et al. |
Early Miocene |
An owlet-nightjar; a species of Aegotheles. |
||||
Gen. et sp. nov |
In press |
A member of the family Anatidae. The type species is A. tortonica. |
||||||
Beiguornis[92] | Gen. et sp. nov | Valid | Wang et al. | Early Cretaceous | Longjiang Formation | China | A member of Enantiornithes. The type species is B. khinganensis. | |
Sp. nov |
In press |
Degrange |
Miocene |
A member of Cathartidae; a species of Dryornis. |
||||
Sp. nov |
In press |
Sánchez-Marco |
Late Miocene |
A vulture; a species of Gypaetus (bearded vulture). |
||||
Gen. et sp. nov |
Li, Stidham & Zhou in Li et al. |
Late Miocene |
A true owl belonging to the clade Surniini. The type species is M. diurna. |
|||||
Sp. nov |
Valid |
Tennyson et al. |
A member of the family Anatidae belonging to the subfamily Tadorninae. |
|||||
Gen. et sp. nov |
Valid |
Wang et al. |
Early Cretaceous (Aptian) |
A member of Enantiornithes. The type species is M. amabilis. |
||||
Sp. nov |
In press |
Sánchez-Marco |
Late Miocene |
A vulture; a species of Neophron (Egyptian vulture). |
||||
Styginetta | Gen. et sp. nov | Valid | Tom Stidham | Late Cretaceous(Maastrichtian) to Paleocene(Danian) | Hell Creek Formation | United States(Montana) | A Presbyornithid, and one of the few genera of birds to survive the Cretaceous–Paleogene extinction event. The type species is S. lofgreni. | |
Gen. et sp. nov |
Valid |
Worthy et al. |
Early Miocene |
Bannockburn Formation |
A bird with morphology most similar to that of mousebirds, assigned to the new family Zealandornithidae of uncertain affinities but likely belonging to Telluraves. The type species is Z. relictus. |
Avian research
- A study aiming to determine whether the flapping flight of birds evolved through the stage of wing-assisted incline running is published by Kuznetsov & Panyutina (2022).[98]
- A study on the skeletal morphometrics of a sample of specimens of Confuciusornis sanctus is published by Marugán-Lobón & Chiappe (2022), who interpret their findings as indicating that the polyphasic life cycle of C. sanctus was different from the life cycle of modern birds, and possibly indicative of change of food resources foraged by this bird during its ontogeny.[99]
- Wang et al. (2022) reconstruct the pectoral girdles of Sapeornis and Piscivorenantiornis.[100]
- Review of the general anatomy, taxonomy, phylogeny, evolutionary trends and paleoecology of hesperornithiforms is published by Bell & Chiappe (2022).[101]
- Review of the palaeognath fossil record is published by Widrig & Field (2022).[102]
- A study on the stratigraphic provenance of Psammornis eggshells (probably produced by giant ostriches), and on their implications for the knowledge of the evolutionary history of struthionids, is published by Buffetaut (2022).[103]
- An overview and update of the rhea fossil record from South America and Antarctica is published by Picasso, Acosta Hospitaleche & Mosto (2022).[104]
- A study on the relationships between the shape and size of extant waterfowl tarsometatarsi and their locomotory habits, and on their implications for the knowledge of the locomotory habits of Cayaoa and Paranyroca, is published by De Mendoza & Gómez (2022).[105]
- A catalogue of fossil and subfossil birds from Cuba is published by Suárez (2022).[106]
- Description of a partial humerus belonging to an auk from the Pliocene Fukagawa Group (Japan) is published by Aotsuka & Endo (2022).[107]
- Fossil material of buttonquails is described from the latest Oligocene and late early to middle Miocene of France by De Pietri et al. (2022), bridging the large temporal gap in the fossil record of this group from the early Oligocene to the late Miocene.[108]
- A review of the evolutionary and biogeographic history of penguins is published by Pelegrín & Acosta Hospitaleche (2022).[109]
- Description of a new partial fossil sternum belonging to a member of Procellariidae from the Middle Pleistocene Ichijiku Formation (Japan) is published by Aotsuka, Isaji, and Endo (2022).[110]
- A study on plant material from rock overhangs from mid-late Holocene sites along the Kawarau-Cromwell-Roxburgh Gorges in Central Otago (New Zealand), much of which was likely transported as roosting material or consumed by moa birds, and on its implications for the knowledge of moa diet and ecology (including the first known evidence of the consumption of kōwhai by moa birds), is published by Pole (2022).[111]
Pterosaurs
New pterosaur taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
In press |
Yang et al. |
An anurognathid. The type species is C. rong. |
|||||
Gen. et sp. nov |
Valid |
Jagielska et al. |
A large (2.5 metre wingspan) rhamphorhynchine pterosaur. Genus includes new species D. sgiathanach. |
|||||
Pachagnathus[114] | Gen. et sp. nov | Valid | Martínez et al. | Late Triassic (Norian) | Quebrada del Barro Formation | Argentina | A raeticodactylid pterosaur. The type species is P. benitoi. | |
Yelaphomte[114] | Gen. et sp. nov | Valid | Martínez et al. | Late Triassic (Norian) | Quebrada del Barro Formation | Argentina | A raeticodactylid pterosaur. The type species is Y. praderioi. |
Pterosaur research
- A study reinterpreting the orbital, antorbital and narial fenestrae in the skulls of the anurognathid pterosaurs, based mainly on data from the skulls of specimens of Batrachognathus volans, and aiming to determine the phylogenetic affinities of anurognathids is published by Dalla Vecchia (2022).[115]
- Two specimens of Kunpengopterus sinensis preserved with bromalites are described from the Jurassic Tiaojishan Formation (China) by Jiang et al. (2022), who interpret the bromalites as fossilized gastric pellets, and evaluate their implications for the knowledge of the diet and the digestive system of this pterosaur.[116]
- Redescription of the holotype specimen of Moganopterus zhuiana is published by Gao et al. (2022).[117]
- Redescription and a study on the phylogenetic affinities of Ferrodraco lentoni is published by Pentland et al. (2022).[118]
- New skeleton of Sinopterus, providing additional information of the postcranial morphology of this pterosaur, is described by Zhou, Niu & Yu (2022).[119]
Other archosaurs
Other archosaur research
- A study on the morphospace occupation of distinct skeletal regions of lagerpetids, aiming to determine which portions of the lagerpetid skeleton are more similar to the anatomy of pterosaurs, is published by Müller (2022).[120]
- A femur of an indeterminate dinosauromorph is described from the Middle Triassic Dinodontosaurus Assemblage Zone (Pinheiros-Chiniquá Sequence, Brazil) by Müller & Garcia (2022), potentially representing the oldest dinosauromorph from South America reported to date.[121]
General research
- Gatesy et al. (2022) propose a standard methodological approach for measuring the relative position and orientation of the major segments of the pelvis and hindlimb of extant and fossil archosaurs in three dimensions.[122]
- A study on the potential soaring performances of extinct giant birds and pterosaurs is published by Goto et al. (2022).[123]
References
- ^ White MA, Bell PR, Campione NE, Sansalone G, Brougham T, Bevitt JJ, Molnar RE, Cook AG, Wroe S, Elliott DA (2022-02-10). "Abdominal contents reveal Cretaceous crocodyliforms ate dinosaurs". Gondwana Research. 106: 281–302. Bibcode:2022GondR.106..281W. doi:10.1016/j.gr.2022.01.016. ISSN 1342-937X. S2CID 246756546.
- ^ Marinho TS, Martinelli AG, Basilici G, Soares MV, Marconato A, Ribeiro LC, Iori FV (2022). "First Upper Cretaceous notosuchians (Crocodyliformes) from the Uberaba Formation (Bauru Group), southeastern Brazil: enhancing crocodyliform diversity". Cretaceous Research. 129: Article 105000. doi:10.1016/j.cretres.2021.105000. S2CID 238725546.
- ^ Iijima M, Qiao Y, Lin W, Peng Y, Yoneda M, Liu J (2022). "An intermediate crocodylian linking two extant gharials from the Bronze Age of China and its human-induced extinction". Proceedings of the Royal Society B: Biological Sciences. 289 (1970): Article ID 20220085. doi:10.1098/rspb.2022.0085. PMC 8905159. PMID 35259993.
- ^ Butler RJ, Fernandez V, Nesbitt SJ, Leite JV, Gower DJ (2022). "A new pseudosuchian archosaur, Mambawakale ruhuhu gen. et sp. nov., from the Middle Triassic Manda Beds of Tanzania". Royal Society Open Science. 9 (2): Article ID 211622. Bibcode:2022RSOS....911622B. doi:10.1098/rsos.211622. PMC 8826131. PMID 35154797.
- ^ Rummy P, Wu XC, Clark JM, Zhao Q, Jin CZ, Shibata M, Jin F, Xu X (2022). "A new paralligatorid (Crocodyliformes, Neosuchia) from the middle Cretaceous of Jilin Province, northeastern China". Cretaceous Research. 129: Article 105018. doi:10.1016/j.cretres.2021.105018. S2CID 239651801.
- ^ Bona P, Fernandez Blanco MV, Ezcurra MD, von Baczko MB, Desojo JB, Pol D (2022). "On the homology of crocodylian post-dentary bones and their macroevolution throughout Pseudosuchia". The Anatomical Record (in press). doi:10.1002/ar.24873. PMID 35202518. S2CID 247107423.
- ^ Sennikov AG (2022). "On pseudosuchians Tsylmosuchus donensis and Scythosuchus basileus from the Early Triassic of Eastern Europe". Paleontological Journal. 56 (1): 91–96.
- ^ Damke LV, Pretto FA, Mastrantonio BM, Garcia MS, Da-Rosa ÁA (2022). "New material of Loricata (Archosauria: Pseudosuchia) from the Late Triassic (Carnian, Hyperodapedon Assemblage Zone) of southern Brazil". Journal of South American Earth Sciences. 115: Article 103754. Bibcode:2022JSAES.11503754D. doi:10.1016/j.jsames.2022.103754. S2CID 247431873.
- ^ Polet DT, Hutchinson JR (2022). "Estimating Gaits of an Ancient Crocodile-Line Archosaur Through Trajectory Optimization, With Comparison to Fossil Trackways". Frontiers in Bioengineering and Biotechnology. 9: Article 800311. doi:10.3389/fbioe.2021.800311. PMC 8852800. PMID 35186914.
- ^ Ponce DA, Desojo JB, Cerda IA (2022). "Palaeobiological inferences of the aetosaur Aetosauroides scagliai (Archosauria: Pseudosuchia) based on microstructural analyses of its appendicular bones". Historical Biology: An International Journal of Paleobiology (in press): 1–12. doi:10.1080/08912963.2022.2035728. S2CID 247163970.
- ^ Castanera D, Pascual-Arribas C, Canudo JI, Puértolas-Pascual E (2022). "A new look at Crocodylopodus meijidei: implications for crocodylomorph locomotion". Journal of Vertebrate Paleontology (in press): e2020803. doi:10.1080/02724634.2021.2020803. S2CID 247566740.
- ^ Groh SS, Upchurch P, Barrett PM, Day JJ (2022). "How to date a crocodile: estimation of neosuchian clade ages and a comparison of four time-scaling methods". Palaeontology. 65 (2): e12589. doi:10.1111/pala.12589. S2CID 247425644.
- ^ Darlim G, Lee MS, Walter J, Rabi M (2022). "The impact of molecular data on the phylogenetic position of the putative oldest crown crocodilian and the age of the clade". Biology Letters. 18 (2): Article ID 20210603. doi:10.1098/rsbl.2021.0603. PMC 8825999. PMID 35135314. S2CID 246652848.
{{cite journal}}
: CS1 maint: PMC embargo expired (link) - ^ Puértolas-Pascual E, Serrano-Martínez A, Pérez-Pueyo M, Bádenas B, Canudo JI (2022). "New data on the neuroanatomy of basal eusuchian crocodylomorphs (Allodaposuchidae) from the Upper Cretaceous of Spain". Cretaceous Research. 135: Article 105170. doi:10.1016/j.cretres.2022.105170. S2CID 246966830.
- ^ Bona P, Barrios F, Ezcurra MD, Fernández Blanco MV (2022). "The taxonomic status of Notocaiman stromeri (Crocodylia, Alligatoroidea) and the early diversity of South American caimanines". Ameghiniana (in press). doi:10.5710/AMGH.27.02.2022.3470. S2CID 247273365.
- ^ Vila B, Sellés A, Moreno-Azanza M, Razzolini NL, Gil-Delgado A, Canudo JI, Galobart À (2022). "A titanosaurian sauropod with Gondwanan affinities in the latest Cretaceous of Europe". Nature Ecology & Evolution. 6 (3): 288–296. doi:10.1038/s41559-021-01651-5. PMID 35132183. S2CID 246650381.
- ^ Dai H, Li N, Maidment SC, Wei G, Zhou YX, Hu XF, Ma QY, Wang XQ, Hu HQ, Peng GZ (2022). "New Stegosaurs from the Middle Jurassic Lower Member of the Shaximiao Formation of Chongqing, China". Journal of Vertebrate Paleontology (in press): e1995737. doi:10.1080/02724634.2021.1995737. S2CID 247267743.
- ^ Averianov AO, Sues HD (2022). "New material and diagnosis of a new taxon of alvarezsaurid (Dinosauria, Theropoda) from the Upper Cretaceous Bissekty Formation of Uzbekistan". Journal of Vertebrate Paleontology (in press): e2036174. doi:10.1080/02724634.2021.2036174. S2CID 247391327.
- ^ Agnolín FL, Cerroni MA, Scanferla A, Goswami A, Paulina-Carabajal A, Halliday T, Cuff AR, Reuil S (2022). "First definitive abelisaurid theropod from the Late Cretaceous of Northwestern Argentina". Journal of Vertebrate Paleontology. 41 (4): e2002348. doi:10.1080/02724634.2021.2002348. S2CID 246766133.
- ^ a b Rozadilla, Sebastián; Brissón-Egli, Federico; Lisandro Agnolín, Federico; Aranciaga-Rolando, Alexis Mauro; Novas, Fernando Emilio (2022). "A new hadrosaurid (Dinosauria: Ornithischia) from the Late Cretaceous of northern Patagonia and the radiation of South American hadrosaurids". Journal of Systematic Palaeontology. 19 (17): 1207–1235. doi:10.1080/14772019.2021.2020917. S2CID 247122005.
- ^ Mateus O, Estraviz-López D (2022). "A new theropod dinosaur from the Early Cretaceous (Barremian) of Cabo Espichel, Portugal: Implications for spinosaurid evolution". PLOS ONE. 17 (2): e0262614. Bibcode:2022PLoSO..1762614M. doi:10.1371/journal.pone.0262614. PMC 8849621. PMID 35171930.
- ^ Rolando MA, Garcia Marsà JA, Agnolín FL, Motta MJ, Rodazilla S, Novas FE (2022). "The sauropod record of Salitral Ojo del Agua: An Upper Cretaceous (Allen Formation) fossiliferous locality from northern Patagonia, Argentina". Cretaceous Research. 129: Article 105029. doi:10.1016/j.cretres.2021.105029. ISSN 0195-6671. S2CID 240577726.
- ^ Ji S, Zhang P (2022). "First new genus and species of basal iguanodontian dinosaur (Ornithischia: Ornithopoda) from southern China". Acta Geoscientica Sinica. 43 (1): 1–10. doi:10.3975/cagsb.2021.090701.
- ^ Averianov, Alexander O.; Lopatin, Alexey V. (2022-02-19). "A new alvarezsaurid theropod dinosaur from the Upper Cretaceous of Gobi Desert, Mongolia". Cretaceous Research. 135: Article 105168. doi:10.1016/j.cretres.2022.105168. ISSN 0195-6671. S2CID 247000540.
- ^ Pei, R.; Qin, Yuying; Wen, Aishu; Zhao, Q.; Wang, Z.; Liu, Z.; Guo, W.; Liu, P.; Ye, W.; Wang, L.; Yin, Z.; Dai, R.; Xu, X. (2022). "A New Troodontid from the Upper Cretaceous Gobi Basin of Inner Mongolia, China". Cretaceous Research. 130: Article 105052. doi:10.1016/j.cretres.2021.105052. S2CID 244186762.
- ^ Dalman SG, Lucas SG, Jasinski SE, Longrich NR (2022). "Sierraceratops turneri, a new chasmosaurine ceratopsid from the Hall Lake Formation (Upper Cretaceous) of south-central New Mexico". Cretaceous Research. 130: Article 105034. doi:10.1016/j.cretres.2021.105034. S2CID 244210664.
- ^ a b Paul GS, Persons WS, Van Raalte J (2022). "The Tyrant Lizard King, Queen and Emperor: Multiple Lines of Morphological and Stratigraphic Evidence Support Subtle Evolution and Probable Speciation Within the North American Genus Tyrannosaurus". Evolutionary Biology (in press). doi:10.1007/s11692-022-09561-5. S2CID 247200214.
- ^ Yao X, Barrett PM, Lei Y, Xu X, Bi S (2022). "A new early-branching armoured dinosaur from the Lower Jurassic of southwestern China". eLife. 11: e75248. doi:10.7554/eLife.75248. PMC 8929930. PMID 35289749.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Zhou Y, Dai H, Yu H, Ma Q, Tan C, Li N, Lin Y, Li D (2022). "Zircon geochronology of the new dinosaur fauna in the Middle Jurassic lower Shaximiao Formation in Chongqing, SW China". Palaeogeography, Palaeoclimatology, Palaeoecology. 592: Article 110894. Bibcode:2022PPP...592k0894Z. doi:10.1016/j.palaeo.2022.110894. S2CID 247000432.
- ^ Klein H, Gierliński GD, Oukassou M, Saber H, Lallensack JN, Lagnaoui A, Hminna A, Charrière A (2022). "Theropod and ornithischian dinosaur track assemblages from Middle to ?Late Jurassic deposits of the Central High Atlas, Morocco". Historical Biology: An International Journal of Paleobiology (in press): 1–27. doi:10.1080/08912963.2022.2042808. S2CID 247427512.
- ^ Enriquez NJ, Campione NE, White MA, Fanti F, Sissons RL, Sullivan C, Vavrek M, Bell PR (2022). "The dinosaur tracks of Tyrants Aisle: An Upper Cretaceous ichnofauna from Unit 4 of the Wapiti Formation (upper Campanian), Alberta, Canada". PLOS ONE. 17 (2): e0262824. Bibcode:2022PLoSO..1762824E. doi:10.1371/journal.pone.0262824. PMC 8809565. PMID 35108301.
- ^ Martin JE, Hassler A, Montagnac G, Therrien F, Balter V (2022). "The stability of dinosaur communities before the K−Pg boundary: A perspective from southern Alberta using calcium isotopes as a dietary proxy". GSA Bulletin (in press). doi:10.1130/B36222.1. S2CID 246756450.
- ^ Brown EE, Butler RJ, Barrett PM, Maidment SC (2022). "Assessing conflict between early neornithischian tree topologies". Journal of Systematic Palaeontology. 19 (17): 1183–1206. doi:10.1080/14772019.2022.2032433. S2CID 247567256.
- ^ Cullen TM, Zhang S, Spencer J, Cousens B (2022). "Sr-O-C isotope signatures reveal herbivore niche-partitioning in a Cretaceous ecosystem". Palaeontology. 65 (2): e12591. doi:10.1111/pala.12591. S2CID 247484805.
- ^ Sánchez-Fenollosa S, Verdú FJ, Suñer M, de Santisteban C (2022). "Tracing Late Jurassic ornithopod diversity in the eastern Iberian Peninsula: Camptosaurus-like postcranial remains from Alpuente (Valencia, Spain)". Journal of Iberian Geology. 48 (1): 65–78. doi:10.1007/s41513-021-00182-z. S2CID 245804125.
- ^ Rotatori FM, Moreno-Azanza M, Mateus O (2022). "Reappraisal and new material of the holotype of Draconyx loureiroi (Ornithischia: Iguanodontia) provide insights on the tempo and modo of evolution of thumb-spiked dinosaurs". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlab113.
- ^ Gasulla JM, Escaso F, Narváez I, Sanz JL, Ortega F (2022). "New Iguanodon bernissartensis Axial Bones (Dinosauria, Ornithopoda) from the Early Cretaceous of Morella, Spain". Diversity. 14 (2): Article 63. doi:10.3390/d14020063.
- ^ García-Cobeña J, Verdú FJ, Cobos A (2022). "Abundance of large ornithopod dinosaurs in the El Castellar Formation (Hauterivian-Barremian, Lower Cretaceous) of the Peñagolosa sub-basin (Teruel, Spain)". Journal of Iberian Geology. 48 (1): 107–127. doi:10.1007/s41513-021-00185-w. S2CID 246029826.
- ^ Samathi A, Suteethorn S (2022). "New materials of iguanodontians (Dinosauria: Ornithopoda) from the Lower Cretaceous Khok Kruat Formation, Ubon Ratchathani, Thailand". Zootaxa. 5094 (2): 301–320. doi:10.11646/zootaxa.5094.2.5. S2CID 246588650.
- ^ Averianov AO, Lopatin AV, Tsogtbaatar K (2022). "Taxonomic attribution of a juvenile hadrosauroid dinosaur from the Upper Cretaceous Bayinshire Formation of Mongolia". Doklady Rossijskoj Akademii Nauk. Nauki O Zemle. 503 (1): 26–31. doi:10.31857/S2686739722030033. S2CID 246698076.
- ^ Wyenberg-Henzler T, Patterson RT, Mallon JC (2022). "Ontogenetic dietary shifts in North American hadrosaurids". Cretaceous Research (in press): Article 105177. doi:10.1016/j.cretres.2022.105177. S2CID 247096035.
- ^ Bertozzo F, Bolotsky I, Bolotsky YL, Poberezhskiy A, Ruffell A, Godefroit P, Murphy E (2022). "A pathological ulna of Amurosaurus riabinini from the Upper Cretaceous of Far Eastern Russia". Historical Biology: An International Journal of Paleobiology (in press): 1–8. doi:10.1080/08912963.2022.2034805. S2CID 247003496.
- ^ Scott EE, Chiba K, Fanti F, Saylor BZ, Evans DC, Ryan MJ (2022). "Taphonomy of a monodominant Gryposaurus sp. bonebed from the Oldman Formation (Campanian) of Alberta, Canada". Canadian Journal of Earth Sciences (in press): 1–17. doi:10.1139/cjes-2020-0200.
- ^ Libke C, Bell PR, Somers CM, McKellar RC (2022). "New scale type from a small-bodied hadrosaur in the Frenchman Formation of southern Saskatchewan: potential implications for integumentary diversity in Edmontosaurus annectens". Cretaceous Research. in press: Article 105215. doi:10.1016/j.cretres.2022.105215. S2CID 247898494.
- ^ Nirody JA, Goodwin MB, Horner JR, Huynh TL, Colbert MW, Smith DK, Evans DC (2022). "Quantifying vascularity in the frontoparietal dome of Stegoceras validum (Dinosauria: Pachycephalosauridae) from high resolution CT scans". Journal of Vertebrate Paleontology (in press): e2036991. doi:10.1080/02724634.2021.2036991. S2CID 247527472.
- ^ Son M, Lee Y, Zorigt B, Kobayashi Y, Park J, Lee S, Kim S, Lee KY (2022). "A new juvenile Yamaceratops (Dinosauria, Ceratopsia) from the Javkhlant Formation (Upper Cretaceous) of Mongolia". PeerJ. 10: e13176. doi:10.7717/peerj.13176.
- ^ Baag SJ, Lee YN (2022). "Bone histology on Koreaceratops hwaseongensis (Dinosauria: Ceratopsia) from the Lower Cretaceous of South Korea". Cretaceous Research. 134: Article 105150. doi:10.1016/j.cretres.2022.105150. S2CID 246340350.
- ^ Mallon JC, Holmes RB, Bamforth EL, Schumann D (2022). "The record of Torosaurus (Ornithischia: Ceratopsidae) in Canada and its taxonomic implications". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlab120.
- ^ D'Anastasio R, Cilli J, Bacchia F, Fanti F, Gobbo G, Capasso L (2022). "Histological and chemical diagnosis of a combat lesion in Triceratops". Scientific Reports. 12 (1): Article number 3941. doi:10.1038/s41598-022-08033-2.
- ^ Fiorillo AR, McCarthy PJ, Kobayashi Y, Suarez MB (2022). "Cretaceous Dinosaurs across Alaska Show the Role of Paleoclimate in Structuring Ancient Large-Herbivore Populations". Geosciences. 12 (4): Article 161. Bibcode:2022Geosc..12..161F. doi:10.3390/geosciences12040161.
- ^ Schade M, Stumpf S, Kriwet J, Kettler C, Pfaff C (2022). "Neuroanatomy of the nodosaurid Struthiosaurus austriacus (Dinosauria: Thyreophora) supports potential ecological differentiations within Ankylosauria". Scientific Reports. 12 (1): Article number 144. Bibcode:2022NatSR..12..144S. doi:10.1038/s41598-021-03599-9. PMC 8741922. PMID 34996895.
- ^ Frauenfelder TG, Bell PR, Brougham T, Bevitt JJ, Bicknell RD, Kear BP, Wroe S, Campione NE (2022). "New Ankylosaurian Cranial Remains From the Lower Cretaceous (Upper Albian) Toolebuc Formation of Queensland, Australia". Frontiers in Earth Science. 10: Article 803505. doi:10.3389/feart.2022.803505.
- ^ Schade M, Ansorge J (2022). "New thyreophoran dinosaur material from the Early Jurassic of northeastern Germany". PalZ. doi:10.1007/s12542-022-00605-x.
- ^ Lefebvre R, Houssaye A, Mallison H, Cornette R, Allain R (2022). "A path to gigantism: Three-dimensional study of the sauropodomorph limb long bone shape variation in the context of the emergence of the sauropod bauplan". Journal of Anatomy (in press). doi:10.1111/joa.13646. PMID 35249216. S2CID 247251261.
- ^ Müller RT (2022). "On the Presence and Shape of Anterolateral Scars in the Ontogenetic Series of Femora for Two Early Sauropodomorph Dinosaurs from the Upper Triassic of Brazil". Paleontological Research. 26 (1): 1–7. doi:10.2517/PR200001. S2CID 245488555.
- ^ Ballell A, Rayfield EJ, Benton MJ (2022). "Walking with early dinosaurs: appendicular myology of the Late Triassic sauropodomorph Thecodontosaurus antiquus". Royal Society Open Science. 9 (1): Article ID 211356. Bibcode:2022RSOS....911356B. doi:10.1098/rsos.211356. PMC 8767213. PMID 35116154.
- ^ Müller RT, Garcia MS (2022). "A sauropodomorph (Dinosauria, Saurischia) specimen from the Upper Triassic of southern Brazil and the early increase in size in Sauropodomorpha". Journal of Vertebrate Paleontology. 41 (4). doi:10.1080/02724634.2021.2002879. S2CID 246787098.
- ^ Taylor MP (2022). "Almost all known sauropod necks are incomplete and distorted". PeerJ. 10: e12810. doi:10.7717/peerj.12810. PMC 8793732. PMID 35127288.
- ^ Sciscio L, Belvedere M, Meyer CA, Marty D (2022). "Sauropod Trackway Morphometrics: An Exploratory Study Using Highway A16 Excavation at the Courtedoux-Tchâfouè Track Site (Late Jurassic, NW Switzerland)". Frontiers in Earth Science. 10: Article 805442. doi:10.3389/feart.2022.805442.
- ^ Woodruff DC, Wolff ED, Wedel MJ, Dennison S, Witmer LM (2022). "The first occurrence of an avian-style respiratory infection in a non-avian dinosaur". Scientific Reports. 12 (1): Article number 1954. Bibcode:2022NatSR..12.1954W. doi:10.1038/s41598-022-05761-3. PMC 8831536. PMID 35145134.
- ^ Cerda IA, Novas FE, Carballido JL, Salgado L (2022). "Osteohistology of the hyperelongate hemispinous processes of Amargasaurus cazaui (Dinosauria: Sauropoda): Implications for soft tissue reconstruction and functional significance". Journal of Anatomy. doi:10.1111/joa.13659. PMID 35332552. S2CID 247677750.
- ^ Tan C, Yu HD, Ren XX, Dai H, M QY, Xiong C, Zhao ZQ, You HL (2022). "Pathological ribs in sauropod dinosaurs from the Middle Jurassic of Yunyang, Chongqing, Southwestern China". Historical Biology (In press): 1–8. doi:10.1080/08912963.2022.2045979. S2CID 247172509.
- ^ Pittman M, Enriquez NJ, Bell PR, Kaye TG, Upchurch P (2022). "Newly detected data from Haestasaurus and review of sauropod skin morphology suggests Early Jurassic origin of skin papillae". Communications Biology. 5 (1): Article number 122. doi:10.1038/s42003-022-03062-z. PMC 8831608. PMID 35145214.
- ^ Bellardini F, Coria RA, Pino DA, Windholz GJ, Baiano MA, Martinelli AG (2022). "Osteology and phylogenetic relationships of Ligabuesaurus leanzai (Dinosauria: Sauropoda) from the Early Cretaceous of the Neuquén Basin, Patagonia, Argentina". Zoological Journal of the Linnean Society (in press). zlac003. doi:10.1093/zoolinnean/zlac003.
- ^ Sakaki H, Winkler DE, Kubo T, Hirayama R, Uno H, Miyata S, Endo H, Sasaki K, Takisawa T, Kubo MO (2022). "Non-occlusal dental microwear texture analysis of a titanosauriform sauropod dinosaur from the Upper Cretaceous (Turonian) Tamagawa Formation, northeastern Japan". Cretaceous Research. in press: Article 105218. doi:10.1016/j.cretres.2022.105218. S2CID 247919470.
- ^ Páramo A, Escaso F, Mocho P, Marcos-Fernández F, Sanz JL, Ortega F (2022). "3D Geometric morphometrics of the hind limb in the titanosaur sauropods from Lo Hueco (Cuenca, Spain)". Cretaceous Research. 134: Article 105147. doi:10.1016/j.cretres.2022.105147.
- ^ Tomaselli MB, Ortiz David LB, González Riga BJ, Coria JP, Mercado CR, Guerra M, Tiviroli GS (2022). "New titanosaurian sauropod tracks with exceptionally well-preserved claw impressions from the Upper Cretaceous of Argentina". Cretaceous Research. 129: Article 104990. doi:10.1016/j.cretres.2021.104990. S2CID 238695181.
- ^ Fiorelli LE, Martinelli AG, da Silva JI, Hechenleitner EM, Soares MV, Silva Junior JC, da Silva JC, Borges ÉM, Ribeiro LC, Marconato A, Basilici G, Marino TS (2022). "First titanosaur dinosaur nesting site from the Late Cretaceous of Brazil". Scientific Reports. 12 (1): Article number 5091. Bibcode:2022NatSR..12.5091F. doi:10.1038/s41598-022-09125-9. PMC 8948192. PMID 35332244.
- ^ Brum AS, Bandeira KL, Sayão JM, Campos DA, Kellner AW (2022). "Microstructure of axial bones of lithostrotian titanosaurs (Neosauropoda: Sauropodomorpha) shows extended fast-growing phase". Cretaceous Research. in press: Article 105220. doi:10.1016/j.cretres.2022.105220. S2CID 247911738.
- ^ Averianov AO, Lopatin AV (2022). "New data on Late Cretaceous sauropods from the Bostobe Formation of northeastern Aral Sea region (Kazakhstan)". Doklady Rossijskoj Akademii Nauk. Nauki O Zemle. 503 (1): 32–35. doi:10.31857/S2686739722030045. S2CID 246694849.
- ^ Lallensack JN, Falkingham PL (2022). "A new method to calculate limb phase from trackways reveals gaits of sauropod dinosaurs". Current Biology (In press). doi:10.1016/j.cub.2015.04.041. PMID 35240050.
- ^ Hendrickx C, Bell PR, Pittman M, Milner AR, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R (2022). "Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs". Biological Reviews (in press). doi:10.1111/brv.12829. PMID 34991180. S2CID 245820672.
- ^ Lockley MG, Kim SH, Kim KS, Bae SM, Kim JY, Xing L (2022). "A high-density Grallator assemblage from the Haman Formation (Cretaceous), Korea: implications for Cretaceous distribution of grallatorids in east Asia". Historical Biology: An International Journal of Paleobiology (in press): 1–9. doi:10.1080/08912963.2021.2018687. S2CID 245683766.
- ^ Herrera-Castillo CM, Moratalla JJ, Belaústegui Z, Marugán-Lobón J, Martín-Abad H, Nebreda SM, López-Archilla AI, Buscalioni AD (2022). "A theropod trackway providing evidence of a pathological foot from the exceptional locality of Las Hoyas (upper Barremian, Serranía de Cuenca, Spain)". PLOS ONE. 17 (4): e0264406. doi:10.1371/journal.pone.0264406. PMID 35385476.
- ^ Monvoisin E, Allain R, Buffetaut E, Picot L (2022). "New data on the theropod diversity from the Middle to Late Jurassic of the Vaches Noires cliffs (Normandy, France)". Geodiversitas. 44 (12): 385–415. doi:10.5252/geodiversitas2022v44a12 (inactive 2022-04-03).
{{cite journal}}
: CS1 maint: DOI inactive as of April 2022 (link) - ^ Isasmendi E, Torices A, Canudo JI, Currie PJ, Pereda-Suberbiola X (2022). "Upper Cretaceous European theropod palaeobiodiversity, palaeobiogeography and the intra-Maastrichtian faunal turnover: new contributions from the Iberian fossil site of Laño" (PDF). Papers in Palaeontology. 8 (1): e1419. doi:10.1002/spp2.1419. S2CID 246028305.
- ^ Padian K (2022). "Why tyrannosaurid forelimbs were so short: An integrative hypothesis". Acta Palaeontologica Polonica. 67 (1): 63–76. doi:10.4202/app.00921.2021. S2CID 247871788.
- ^ Fabbri M, Navalón G, Benson R, Pol D, O'Connor J, Bhullar BS, Erickson GM, Norell MA, Orkney A, Lamanna MC, Zouhri S, Becker J, Emke A, Dal Sasso C, Bindellini G, Maganuco S, Auditore M, Ibrahim N (2022-03-23). "Subaqueous foraging among carnivorous dinosaurs". Nature. 603 (7903): 852–857. doi:10.1038/s41586-022-04528-0. PMID 35322229. S2CID 247630374.
- ^ Yun CG (2022). "Frontal bone anatomy of Teratophoneus curriei (Theropoda: Tyrannosauridae) from the Upper Cretaceous Kaiparowits Formation of Utah" (PDF). Acta Palaeontologica Romaniae. 18 (1): 51–64. doi:10.35463/j.apr.2022.01.06.
- ^ Foster W, Brusatte SL, Carr TD, Williamson TE, Yi L, Lü J (2022). "The cranial anatomy of the long-snouted tyrannosaurid dinosaur Qianzhousaurus sinensis from the Upper Cretaceous of China". Journal of Vertebrate Paleontology. 41 (4): e1999251. doi:10.1080/02724634.2021.1999251. S2CID 246799243.
- ^ Kim SH, Lee YN, Park JY, Lee S, Winkler DA, Jacobs LL, Barsbold R (2022). "A new species of Osteoglossomorpha (Actinopterygii: Teleostei) from the Upper Cretaceous Nemegt Formation of Mongolia: paleobiological and paleobiogeographic implications". Cretaceous Research. 135 (in press): Article 105214. doi:10.1016/j.cretres.2022.105214. S2CID 247637952.
- ^ Bouabdellah F, Lessner E, Benoit J (2022). "The rostral neurovascular system of Tyrannosaurus rex". Palaeontologia Electronica. 25 (1): Article number 25.1.1.a3. doi:10.26879/1178.
- ^ Nottrodt RE (2022). "First articulated ornithomimid specimens from the upper Maastrichtian Scollard Formation of Alberta, Canada". Journal of Vertebrate Paleontology (in press): e2019754. doi:10.1080/02724634.2021.2019754. S2CID 247311332.
- ^ Averianov AO, Lopatin AV (2022). "A re-appraisal of Parvicursor remotus from the Late Cretaceous of Mongolia: implications for the phylogeny and taxonomy of alvarezsaurid theropod dinosaurs". Journal of Systematic Palaeontology. 19 (16): 1097–1128. doi:10.1080/14772019.2021.2013965. S2CID 247222017.
- ^ Meade LE, Ma W (2022). "Cranial muscle reconstructions quantify adaptation for high bite forces in Oviraptorosauria". Scientific Reports. 12 (1): Article number 3010. Bibcode:2022NatSR..12.3010M. doi:10.1038/s41598-022-06910-4. PMC 8863891. PMID 35194096.
- ^ Pei, R.; Xu, X. (2022). "New prospects on the cranial evolution of non-avialan paravian theropods based on geometric morphometrics" (PDF). In S-C. Chang; D. Zheng (eds.). Mesozoic Biological Events and Ecosystems in East Asia. The Geological Society of London. doi:10.1144/SP521-2021-179. S2CID 247095472.
{{cite book}}
:|journal=
ignored (help) - ^ Brilhante NS, Constância de França T, Castro F, Sanches da Costa L, Currie PJ, Kugland de Azevedo SA, Delcourt R (2022). "A dromaeosaurid-like claw from the Upper Cretaceous of southern France". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2021.2007243. S2CID 247378741.
- ^ Powers MJ, Fabbri M, Doschak MR, Bhullar BA, Evans DC, Norell MA, Currie PJ (2022). "A new hypothesis of eudromaeosaurian evolution: CT scans assist in testing and constructing morphological characters". Journal of Vertebrate Paleontology (in press): e2010087. doi:10.1080/02724634.2021.2010087. S2CID 247039404.
- ^ Noto CR, D'Amore DC, Drumheller SK, Adams TL (2022). "A newly recognized theropod assemblage from the Lewisville Formation (Woodbine Group; Cenomanian) and its implications for understanding Late Cretaceous Appalachian terrestrial ecosystems". PeerJ. 10: e12782. doi:10.7717/peerj.12782. PMC 8796713. PMID 35127286.
- ^ a b Worthy TH, Scofield RP, Salisbury SW, Hand SJ, De Pietri VL, Archer M (2022). "Two new neoavian taxa with contrasting palaeobiogeographical implications from the early Miocene St Bathans Fauna, New Zealand". Journal of Ornithology. doi:10.1007/s10336-022-01981-6.
- ^ Mayr G, Lechner T, Böhme M (2022). "Nearly complete leg of an unusual, shelduck-sized anseriform bird from the earliest late Miocene hominid locality Hammerschmiede (Germany)". Historical Biology: An International Journal of Paleobiology (in press): 1–10. doi:10.1080/08912963.2022.2045285. S2CID 247310405.
- ^ Wang X, Ju S, Wu W, Liu Y, Guo Z, Ji Q (2022). "The first enantiornithine bird from the Lower Cretaceous Longjiang Formation in the Great Khingan Range of Inner Mongolia". Acta Geologica Sinica. 96 (2): 337–348. doi:10.19762/j.cnki.dizhixuebao.2022114.
- ^ Degrange FJ (2022). "A new species of Dryornis (Aves, Cathartiformes) from the Santa Cruz Formation (lower Miocene), Patagonia, Argentina". Journal of Vertebrate Paleontology (in press): e2008411. doi:10.1080/02724634.2021.2008411. S2CID 246833070.
- ^ a b Sánchez-Marco A (2022). "Two new Gypaetinae (Accipitridae, Aves) from the late Miocene of Spain". Historical Biology: An International Journal of Paleobiology (in press): 1–10. doi:10.1080/08912963.2022.2053117. S2CID 247605500.
- ^ Li Z, Stidham TA, Zheng X, Wang Y, Zhao T, Deng T, Zhou Z (2022). "Early evolution of diurnal habits in owls (Aves, Strigiformes) documented by a new and exquisitely preserved Miocene owl fossil from China". Proceedings of the National Academy of Sciences of the United States of America. 119 (15): e2119217119. doi:10.1073/pnas.2119217119. PMID 35344399. S2CID 247776318.
- ^ Tennyson AJ, Greer L, Lubbe P, Marx FG, Richards MD, Giovanardi S, Rawlence NJ (2022). "A New Species of Large Duck (Aves: Anatidae) from the Miocene of New Zealand". Taxonomy. 2 (1): 136–144. doi:10.3390/taxonomy2010011.
- ^ Wang X, Cau A, Luo X, Kundrát M, Wu W, Ju S, Guo Z, Liu Y, Ji Q (2022). "A new bohaiornithid-like bird from the Lower Cretaceous of China fills a gap in enantiornithine disparity". Journal of Paleontology: 1–16. doi:10.1017/jpa.2022.12. S2CID 247432530.
- ^ Kuznetsov AN, Panyutina AA (2022). "Where was WAIR in avian flight evolution?". Biological Journal of the Linnean Society (in press). doi:10.1093/biolinnean/blac019.
- ^ Marugán-Lobón J, Chiappe LM (2022). "Ontogenetic niche shifts in the Mesozoic bird Confuciusornis sanctus". Current Biology (in press). doi:10.1016/j.cub.2022.02.010. PMID 35240049. S2CID 247198993.
- ^ Wang S, Ma Y, Wu Q, Wang M, Hu D, Sullivan C, Xu X (2022). "Digital restoration of the pectoral girdles of two Early Cretaceous birds, and implications for early flight evolution". eLife. 11: e76086. doi:10.7554/eLife.76086. PMID 35356889.
- ^ Bell A, Chiappe LM (2022). "The Hesperornithiformes: A Review of the Diversity, Distribution, and Ecology of the Earliest Diving Birds". Diversity. 14 (4): Article 267. doi:10.3390/d14040267.
- ^ Widrig K, Field DJ (2022). "The Evolution and Fossil Record of Palaeognathous Birds (Neornithes: Palaeognathae)". Diversity. 14 (2): Article 105. doi:10.3390/d14020105.
- ^ Buffetaut E (2022). "The Enigmatic Avian Oogenus Psammornis: A Review of Stratigraphic Evidence". Diversity. 14 (2): Article 123. doi:10.3390/d14020123.
- ^ Picasso, Mariana B.J.; Acosta Hospitaleche, Carolina; Mosto, María C. (2022). "An overview and update of South American and Antarctic fossil rheidae and putative ratitae (Aves, Palaeognathae)". Journal of South American Earth Sciences. 115: 103731. Bibcode:2022JSAES.11503731P. doi:10.1016/j.jsames.2022.103731. S2CID 246723279.
- ^ Santiago De Mendoza R, Gómez RO (2022). "Ecomorphology of the tarsometatarsus of waterfowl (Anseriformes) based on geometric morphometrics and its application to fossils". The Anatomical Record (in press). doi:10.1002/ar.24891. PMID 35132811. S2CID 246651718.
- ^ Suárez, William (2022). "Catalogue of Cuban fossil and subfossil birds". Bulletin of the British Ornithologists' Club. 142 (1). doi:10.25226/bboc.v142i1.2022.a3. S2CID 247385749.
- ^ Aotsuka, Keiichi; Endo, Hideki (2022). "A Fossil Humerus of Pliocene Alcidae (Aves: Charadriiformes) from the Fukagawa Group in Hokkaido, Japan". Ornithological Science. 21 (1). doi:10.2326/osj.21.79. S2CID 246475596.
- ^ De Pietri VL, Mayr G, Costeur L, Scofield RP (2022). "New records of buttonquails (Aves, Charadriiformes, Turnicidae) from the Oligocene and Miocene of Europe". Comptes Rendus Palevol. 21 (11): 235–244. doi:10.5852/cr-palevol2022v21a11. S2CID 247912905.
- ^ Pelegrín, Jonathan S.; Acosta Hospitaleche, Carolina (2022). "Evolutionary and Biogeographical History of Penguins (Sphenisciformes): Review of the Dispersal Patterns and Adaptations in a Geologic and Paleoecological Context". Diversity. 14 (4): 255. doi:10.3390/d14040255.
- ^ Aotsuka K, Isaji S, Endo H (2022). "An Avian Sternum (Aves: Procellariidae) from the Pleistocene Ichijiku Formation in Chiba, Japan". Paleontological Research. 26 (1): 74–86. doi:10.2517/PR200007. S2CID 245478620.
- ^ Pole M (2022). "A vanished ecosystem: Sophora microphylla (Kōwhai) dominated forest recorded in mid-late Holocene rock shelters in Central Otago, New Zealand". Palaeontologia Electronica. 25 (1): Article number 25.1.1A. doi:10.26879/1169.
- ^ Yang Z, Benton MJ, Hone DW, Xu X, McNamara ME, Jiang B (2022). "Allometric analysis sheds light on the systematics and ontogeny of anurognathid pterosaurs". Journal of Vertebrate Paleontology (in press): e2028796. doi:10.1080/02724634.2021.2028796. S2CID 247262846.
- ^ Jagielska, N.; O'Sullivan, M.; Funston, G. F.; Butler, I. B.; Challands, T. J.; Clark, N. D. L.; Fraser, N. C.; Penny, A.; Ross, D. A.; Wilkinson, M.; Brusatte, S. L. (2022). "A skeleton from the Middle Jurassic of Scotland illuminates an earlier origin of large pterosaurs". Current Biology. 32 (6): 1446–1453.e4. doi:10.1016/j.cub.2022.01.073. PMID 35196508. S2CID 247013664.
- ^ a b Martínez, Ricardo N.; Andres, Brian; Apaldetti, Cecilia; Cerda, Ignacio A. (March 2022). "The dawn of the flying reptiles: first Triassic record in the southern hemisphere". Papers in Palaeontology. 8 (2). doi:10.1002/spp2.1424. ISSN 2056-2799. S2CID 247494547.
- ^ Dalla Vecchia FM (2022). "The presence of an orbitoantorbital fenestra: further evidence of the anurognathid peculiarity within the Pterosauria". Rivista Italiana di Paleontologia e Stratigrafia. 128 (1): 23–42. doi:10.54103/2039-4942/16973.
- ^ Jiang S, Wang X, Zheng X, Cheng X, Wang X, Wei G, Kellner AW (2022). "Two emetolite-pterosaur associations from the Late Jurassic of China: showing the first evidence for antiperistalsis in pterosaurs". Philosophical Transactions of the Royal Society B: Biological Sciences. 377 (1847): Article ID 20210043. doi:10.1098/rstb.2021.0043. PMC 8819363. PMID 35125005. S2CID 246608508.
{{cite journal}}
: CS1 maint: PMC embargo expired (link) - ^ Gao DS, Jiang SX, Xu L, Cheng X, Yang LL, Jia SH, Wang XL (2022). "Reappraisal of the largest ctenochasmatid Moganopterus zhuiana Lü et al., 2012". Vertebrata PalAsiatica (in press): 1. doi:10.19615/j.cnki.2096-9899.220111.
- ^ Pentland AH, Poropat SF, White MA, Rigby SL, Bevitt JJ, Duncan RJ, Sloan T, Elliott RA, Elliott HA, Elliott JA, Elliott DA (2022). "The osteology of Ferrodraco lentoni, an anhanguerid pterosaur from the mid-Cretaceous of Australia". Journal of Vertebrate Paleontology (in press): e2038182. doi:10.1080/02724634.2021.2038182. S2CID 247814094.
- ^ Zhou CF, Niu T, Yu D (2022). "New data on the postcranial skeleton of the tapejarid Sinopterus from the Early Cretaceous Jehol Biota". Historical Biology: An International Journal of Paleobiology (in press): 1–8. doi:10.1080/08912963.2022.2042811. S2CID 247046176.
- ^ Müller RT (2022). "The closest evolutionary relatives of pterosaurs: what the morphospace occupation of different skeletal regions tell us about lagerpetids". The Anatomical Record (in press). doi:10.1002/ar.24904. PMID 35199946. S2CID 247081990.
- ^ Müller RT, Garcia MS (2022). "Oldest dinosauromorph from South America and the early radiation of dinosaur precursors in Gondwana". Gondwana Research. 107: 42–48. Bibcode:2022GondR.107...42M. doi:10.1016/j.gr.2022.02.010. S2CID 247211845.
- ^ Gatesy SM, Manafzadeh AR, Bishop PJ, Turner ML, Kambic RE, Cuff AR, Hutchinson JR (2022). "A proposed standard for quantifying 3-D hindlimb joint poses in living and extinct archosaurs". Journal of Anatomy (in press). doi:10.1111/joa.13635. PMID 35118654. S2CID 246529365.
- ^ Goto Y, Yoda K, Weimerskirch H, Sato K (2022). "How did extinct giant birds and pterosaurs fly? A comprehensive modeling approach to evaluate soaring performance". PNAS Nexus (in press): pgac023. doi:10.1093/pnasnexus/pgac023.