Vés al contingut

Gp120

De la Viquipèdia, l'enciclopèdia lliure
Aquesta és una versió anterior d'aquesta pàgina, de data 09:42, 15 des 2009 amb l'última edició de BQmUB2009107 (discussió | contribucions). Pot tenir inexactituds o contingut no apropiat no present en la versió actual.
(dif.) ←la pròxima versió més antiga | vegeu la versió actual (dif.) | Versió més nova → (dif.)
Fitxer:3hi1 bio r 500.jpg
Estructura de HIV-1 - gp120 (nucli amb V3) en complex amb CD4 unit a l'anticós F105

Plantilla:Lowercase

Lagp120 és una glicoproteïna situada a la superficie de l'estructura de l'HIV. El nomnre 120 fa referència al seu pes molecular de 120 kilodaltons. La gp120 és essencial per l'entrada de virus a les cèl·lules.Així, juga un paper vital en la búsqueda de receptors específics per l'entrada de molècules.

L'estructura de cristall de gp120, complexa amb D1D2 i CD4 i un anticós Fab va ser resolta per Peter Wo¡¡Kwong ak 1988. Està organitzada amb un dominini extern i un d'intern,amb sentit cap al seu termini i la bridging sheet. The gp120 gene, env, is around 1.5 kb long and codes for around 500 aminoàcids ref name="Kuiken">Kuiken, C., Leitner, T., Foley, B., et al. (2008). "HIV Sequence Compendium", Los Alamos National Laboratory.</ref>. Three gp120s, bound as heterodimers to a transmembrane glycoprotein, gp41, are thought to combine in a trimer to form the envelope spike[1], which is involved in virus-cell attachment.

The Human Immunodeficiency Virus (HIV) can mutate frequently to stay ahead of the immune system. There is however a highly conserved region in the virus genome near its receptor binding site. The glycoprotein gp120 is anchored to the viral membrane, or envelope, via non-covalent bonds with the transmembrane glycoprotein, gp41. It is involved in entry into cells by binding to CD4 receptors, particularly helper T-cells. Binding to CD4 is mainly electrostatic although there are van der Waals interactions and hydrogen bonds.

La variabilitat de la gp120

Since gp120 plays a vital role in the ability of HIV-1 to enter CD4+ cells, its evolution is of particular interest. Many neutralizing antibodies bind to sites located in variable regions of gp120, so mutations in these regions will be selected for strongly[2]. The diversity of env has been shown to increase by 1-2% per year in HIV-1 group M and the variable units are notable for rapid changes in amino acid sequence length. Increases in gp120 variability result in significantly elevated levels of viral replication, indicating an increase in viral fitness in individuals infected by diverse HIV-1 variants[3]. Further studies have shown that variability in potential N-linked glycosylation sites (PNGSs) also result in increased viral fitness. PNGSs allow for the binding of long-chain carbohydrates to the high variability regions of gp120, so the authors hypothesize that the number of PNGSs in env might affect the fitness of the virus by providing more or less sensitivity to neutralizing antibodies. The presence of large carbohydrate chains extending from gp120 might obscure possible antibody binding sites[4]. The relationship between gp120 and neutralizing antibodies is an example of Red Queen evolutionary dynamics. Continuing evolutionary adaptation is required for the viral envelope protein to maintain fitness relative to the continuing evolutionary adaptations of the host immune neutralizing antibodies, and vice-versa, forming a coevolving system[5] .

Les vacunes diana de gp120

Since CD4 receptor binding is the most obvious step in HIV infection, gp120 was among the first targets of HIV vaccine research. Efforts to develop HIV vaccines targeting gp120, however, have been hampered by the chemical and structural properties of gp120, which make it difficult for antibodies to bind to it. gp120 can also easily be shed from the surface of the virus and captured by T cells due to its loose binding with gp41. A conserved region in the gp120 glycoprotein that is involved in the metastable attachment of gp120 to CD4 has now been identified and targeting of invariant region has been achieved with a broadly neutralising antibody, b12[6].

Research presented at the 17th International AIDS Conference in Mexico City provided the possibility of a new vaccine based on antibodies that hydrolyze or cleave apart the gp120 protein[7], rendering it incapable of binding to lymphocytes[8]. This binding is the first step in the process of HIV infection. The antibody, IgA, is present in all human beings, but its potential for combating HIV was first recognized in patients with lupus, who exhibited both an abnormal resistance to HIV infection and an abnormally high concentration of IgA[8]. Scientists confirmed that IgA purified from the blood plasma and saliva of HIV-seronegative subjects cleaved gp120 more effectively than the more naturally abundant IgG did, which had little or no effect[7]. To combat HIV, IgA could be administered in large doses as a drug to people already infected. Researchers are yet to make a vaccine which stimulates the body to increase its own production of IgA[8].

Competició

The protein gp120 is necessary during the initial binding of HIV to its target cell. Consequently, anything which binds to gp120's target can block gp120 from binding to a cell by being physically in the way. Many of these are toxic to the immune system, such as the anti-CD4 monoclonal antibody OKT4.

EGCG, a flavonoid found in green tea, binds to the same CD4 receptor that gp120 binds to, effectively competing for this receptor. Test tube studies suggested that EGCG concentrations as low as 0.2 mmols/L – the amount of the molecule found in a cup or two of green tea – temporarily reduced HIV-CD4 cell binding by 40%.[9] Further research is needed both to confirm that this one-time laboratory experiment can be repeated successfully and to see whether the result has any practical effect. For example, by binding to CD4, the flavonoid might slow the progression of AIDS, but it might also attract an antibody response against the non-human flavonoid that destroys an immune system. One important aspect of EGCG is that, unlike antiretroviral drugs, it can penetrate the blood brain barrier, and may help prevent the onset of AIDS-related dementia.

Referències

  1. Zhu, P., Winkler, H., Chertova, E., et al. «Cryoelectron Tomography of HIV-1 Envelope Spikes: Further Evidence for Tripod-Like Legs». PLoS Pathogens, vol. 4, 2008, pàg. e1000203. DOI: 10.1371/journal.ppat.1000203.
  2. Wyatt, R., Kwong, P., Desjardins, E., Sweet, R., Robinson, J., Hendrickson, W., and Sodroski, J. «The antigenic structure of the HIV gp120 envelope gycoprotein». Nature, vol. 393, 1998, pàg. 705-711.
  3. Novitsky, V., Lagakos, S., Herzig, M., Bonney, C., Kebaabetswe, L., Rossenkhan, R., Nkwe, D., Margolin, L., Musonda, R., Moyo, S., Woldegabriel, E., van Widenfelt, E., Mkhema, J., and Essex, M. «Evolution of proviral gp120 over the first year of HIV-1 subtype C infection». Journal of Virology, vol. 383, 2009, pàg. 47-59.
  4. Wood, N., Bhattacharya, T., Keele, B.,Giorgi, E., Liu, M., Gaschen, B., Daniels, M., Ferrari, G., Haynes, B., McMichael, A., Shaw, G., Hahn, B., Korber, B., and Seoighe, C. «HIV evolution in early infection: selection pressures, patterns of insertion and deletion, and the impact of APOBEC». PLOS Pathogens, vol. 5, 2009, pàg. 1-16.
  5. Frost, S., Wrin, T., Smith, D., Pond, S., Liu, Y., Paxinos, E., Chappey, C., Galovich, J., Beauchaine, J., Petropulos, C. and Little, S. «Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection». Proceedings of the National Academy of Sciences, vol. 102, 2005, pàg. 18514-18519.
  6. Zhou T, Xu L, Dey B, et al. «Structural definition of a conserved neutralization epitope on HIV-1 gp120». Nature, vol. 445, 2007, pàg. 732-737. DOI: 10.1038/nature05580.
  7. 7,0 7,1 Planque, S., Mitsuda, Y., Taguchi, H., et al. «Characterization of gp120 Hydrolysis by IgA Antibodies from Humans without HIV Infection». AIDS Research and Human Retroviruses, vol. 23, 2007, pàg. 1541-1554. DOI: 10.1089/aid.2007.0081.
  8. 8,0 8,1 8,2 Brown, David, "Antibodies May Lead to Protection Against HIV", The Washington Post, 8 August 2008.
  9. AIDSmeds.com - Top Stories : Green Tea for HIV? - by Tim Horn

Veure també

Plantilla:Viral proteins