Algenreaktor
Als Algenreaktor oder Algenbioreaktor bezeichnet man einen Photobioreaktor zum Kultivieren von Algen in dem Kohlendioxid eingetragen wird. Die heranwachsenden Algen nutzen das ihnen zur Verfügung gestellte CO2 und Sonnenlicht, um Photosynthese zu betreiben. Vorteile der Kultivierung von Mikroalgen (Phytoplankton) im Vergleich zum Anbau von Nutzpflanzen an Land sind der hohe Ertrag pro Fläche sowie das Ausbleiben von Abfällen wie Wurzeln und geringerer Wasserverbrauch. Zudem stehen sie nicht in Konkurrenz mit Landpflanzen. Nachteilig sind die hohen Kosten und das Fehlen großtechnischer Verfahren. Eine Nutzung für die Produktion von Bioenergie ist noch nicht wirtschaftlich. Der Einsatz zur Herstellung von Nahrungsergänzungsmitteln, Pharmazeutika und kosmetischen Mitteln findet bereits statt.[1]
Arten
Die meistgenutzten Klassen sind Cyanophyceae (Blau- und Grünalgen), Chlorophyceae (Grünalgen), Bacillariophyceae (Diatomeen) und Chrysophyceae (Goldalgen). Die domierenden Gattungen in der kommerziellen Produktion sind Isochrysis (goldbrauner Flagellat Prymnesiophyceae), Chaetoceros (Kieselalge), Chlorella (einzellige Grünalge - Süßwasser), Arthrospira (Spirulina – Cyanobakterien (Blaualge)) und Dunaliella (einzellige Grünalge - Salzwasser).[1]
Verwendung
Mikroalgen aus Reaktoren können getrocknet und gemahlen als Schwermetallfilter dienen, die gründlicher als Aktivkohle reinigen und wiederverwendbar sind. Aus Abwehrstoffen können Antifoulinganstriche und Medikamente gegen pathogene Viren und Bakterien gewonnen werden.[1] Eine Pilotanlage zur Biomasseproduktion von Eon Hanse befindet sich in Hamburg-Reitbrook.[2]
CO2-Fixierung
Durch den Emissionshandel sind umweltfreundliche Verfahren lukrativ. Die Mikroalgen fixieren den Kohlenstoffdioxid aus Kraftwerksemissionen und nutzen ihn als C-Quelle. Nachteilig ist jedoch, dass die Anlage in den Wintermonaten anhalten muss. Zudem ist es utopisch das gesamte Abgas aus Kohlekraft zu fixieren, da der Ausstoß von CO2 entsprechend hoch ist. Des Weiteren ist der Flächenbedarf problematisch und ein Pumpbetrieb mit dem Airliftverfahren ist energieintensiv.[1]
Treibstoffherstellung
Als sogenannte Biotreibstoff der dritten Generation gelten gezüchtete Pflanzen, die dem Ackerbau keine Fläche wegnehmen. Einige Mikroalgen (z.B. Prymnesium parvum, Scenedesmus dimorphus) stehen für eine Nutzung zur Ölgewinnung in der Prüfung, da sie hohe Ölgehalte aufweisen. Problematisch ist, dass die Algen erst in der stationären Phase des Wachstums ihre Energie in Form von Ölen speichern. Schwierig ist auch das Melken der Algen ohne diese zu zerstören. Zur Ernte müssen die Algen zentrifugiert und filtriert werden, da sie sich aufgrund ihrer kleinen Größe nicht von alleine absetzen. Nur die Trockenmasse lässt sich weiter verarbeiten wobei eine Trocknung ebenfalls energieintensiv ist. Eine kostendeckende Produktion ist momentan noch nicht in Aussicht.[1]
Wasserstoffproduktion
Die Grünalge Chlamydomonas reinhardtii wandelt unter Stressbedingungen wie Nährstoffmangel mit Hilfe des Enzyms Hydrogenase Protonen mit bei der Photosynthese entstandenen Elektronen in Wasserstoff um. Von Vorteil ist, dass die Prozesse bei normalem Umgebungsdruck und -temperatur ablaufen. Die Anlagenkosten sind daher gering und das Substrat in der Hauptsache Wasser ist billig und regenerierbar. Das Verfahren ist CO2-neutral. Es wird zudem ein Wasserstoff erzeugt, der gegenüber dem aus anderen Vergasungsverfahren deutlich weniger unerwünschte Begleitstoffe wie z.B. Schwefelwasserstoff (H2S), Alkalien oder Staub enthält.[1] Im Gegensatz zu einem In vitro System ist die Ausbeute jedoch sehr gering.[3]
Nahrungsmittel
Die Nutzung einiger Algenarten als Nahrungsmittel scheint von allen Verwendungsmöglichkeiten am erfolgversprechendsten. So enthält die Süßwasseralge Chlorella z.B. die Mineralstoffe Calcium, Magnesium, Zink, Eisen, Selen sowie alle Essentiellen Aminosäuren und zahlreiche ungesättigte Fettsäuren. Eine Nutzung als Nahrungsergänzungsmittel bietet sich aufgrund der vielfältigen gesundheitsfördernden Effekte an.[1]