Jump to content

Canonical correlation

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Geomon (talk | contribs) at 02:00, 16 August 2010 (Connection to principal angles). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In statistics, canonical correlation analysis, introduced by Harold Hotelling, is a way of making sense of cross-covariance matrices. If we have two sets of variables, and , and there are correlations among the variables, then canonical correlation analysis will enable us to find linear combinations of the 's and the 's which have maximum correlation with each other.


Definition

Given two column vectors and of random variables with finite second moments, one may define the cross-covariance to be the matrix whose entry is the covariance . In practice, we would estimate the covariance matrix based on sampled data from and (i.e. from a pair of data matrices).

Canonical correlation analysis seeks vectors and such that the random variables and maximize the correlation . The random variables and are the first pair of canonical variables. Then one seeks vectors maximizing the same correlation subject to the constraint that they are to be uncorrelated with the first pair of canonical variables; this gives the second pair of canonical variables. This procedure may be continued up to times.

Computation

Proof

Let and . The parameter to maximize is

The first step is to define a change of basis and define

And thus we have

By the Cauchy-Schwarz inequality, we have

There is equality if the vectors and are collinear. In addition, the maximum of correlation is attained if is the eigenvector with the maximum eigenvalue for the matrix (see Rayleigh quotient). The subsequent pairs are found by using eigenvalues of decreasing magnitudes. Orthogonality is guaranteed by the symmetry of the correlation matrices.

Solution

The solution is therefore:

  • is an eigenvector of
  • is proportional to

Reciprocally, there is also:

  • is an eigenvector of
  • is proportional to

Reversing the change of coordinates, we have that

  • is an eigenvector of
  • is an eigenvector of
  • is proportional to
  • is proportional to

The canonical variables are defined by:

Hypothesis testing

Each row can be tested for significance with the following method. Since the correlations are sorted, saying that row is zero implies all further correlations are also zero. If we have independent observations in a sample and is the estimated correlation for . For the th row, the test statistic is:

which is asymptotically distributed as a chi-square with degrees of freedom for large .[1] Since all the correlations from to are logically zero (and estimated that way also) the product for the terms after this point is irrelevant.

Practical uses

A typical use for canonical correlation in the experimental context is to take a two sets of variables and see what is common amongst the two sets. For example in psychological testing, you could take two well established multidimensional personality tests such as the MMPI and the NEO. By seeing how the MMPI factors relate to the NEO factors, you could gain insight into what dimensions were common between the tests and how much variance was shared. For example you might find that an extraversion or neuroticism dimension accounted for a substantial amount of shared variance between the two tests.

One can also use canonical correlation analysis to produce a model equation which relates two sets of variables, for example a set of performance measures and a set of explanatory variables, or a set of outputs and set of inputs. Constraint restrictions can be imposed on such a model to ensure it reflects theoretical requirements or intuitively obvious conditions. This type of model is known as a maximum correlation model.[2]

Connection to principal angles

Assuming that and have zero expected values, i.e., , their covariance matrices and can be viewed as Gram matrices in an inner product, see Covariance#Relationship_to_inner_products, for the columns of and , correspondingly. The definition of the canonical variables and is equivalent to the definition of principal vectors for the pair of subspaces spanned by the columns of and with respect to this inner product. The canonical correlations equal to the cosine of principal angles.

See also

References

  • Applied Multivariate Statistical Analysis, Fifth Edition, Richard Johnson and Dean Wichern
  1. ^ Kanti V. Mardia, J. T. Kent and J. M. Bibby (1979). Multivariate Analysis. Academic Press.
  2. ^ C.Tofallis Model Building with Multiple Dependent Variables and Constraints. Journal of the Royal Statistical Society Series D: The Statistician 48(3), 1–8 (1999).