Jump to content

Radio-frequency identification

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 66.151.49.196 (talk) at 00:06, 30 June 2004 (External links). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Radio frequency identification (RFID) is a method of remotely storing and retrieving data using devices called RFID tags. An RFID tag is a small object, such as an adhesive sticker, that can be attached to or incorporated into a product. RFID tags contain antennas to enable them to receive and respond to radio-frequency queries from an RFID transceiver.

Types of RFID tags

RFID tags can be either active or passive.

Passive RFID tags do not have their own power supply: the minute electrical current induced in the antenna by the incoming radio-frequency scan provides enough power for the tag to send a response. Due to power and cost concerns, the response of a passive RFID tag is necessarily brief, typically just an ID number (GUID). Lack of its own power supply makes the device quite small: commercially available products exist that can be embedded under the skin. As of 2004, the smallest such devices commercially available measured 0.4 mm × 0.4 mm, and thinner than a sheet of paper; such devices are practically invisible. Passive tags have practical read ranges that vary from about 10 mm up to about 5 metres.

Active RFID tags, on the other hand, must have a power source, and may have longer ranges and larger memories than passive tags, as well as the ability to store additional information sent by the transceiver. At present, the smallest active tags are about the size of a coin. Many active tags have practical ranges of tens of metres, and a battery life of up to five years.

As passive tags are much cheaper to manufacture, the vast majority of RFID tags in existence are of the passive variety.

There are four different kinds of tags commonly in use, their differences based on the level of their radio frequency: Low frequency tags (between 125 to 134 kilohertz), High frequency tags (13.56 megahertz), UHF tags (868 to 956 megahertz), and Microwave tags (2.45 gigahertz).

Current usage

Low-frequency RFID tags are commonly used for animal identification, beer keg tracking, and automobile key-and-lock, anti-theft systems. Pets are often embedded with small chips so that they may be returned to their owners if lost. In the United States, two RFID frequencies are used: 125kHz (the original standard) and 134.5kHz, the international standard.

High-frequency RFID tags are used in library book or bookstore tracking, pallet tracking, building access control, airline baggage tracking, and apparel item tracking. High-frequency tags are widely used in identification badges, replacing earlier magnetic stripe cards. These badges need only be held within a certain distance of the reader to authenticate the holder.

UHF RFID tags are commonly used commercially in pallet and container tracking, and truck and trailer tracking in shipping yards.

Microwave RFID tags are used in long range access control for vehicles, an example being General Motors' OnStar system.

Some toll booths, such as California's FasTrak system, use RFID tags for electronic toll collection. The tags are read as vehicles pass; the information is used to debit the toll from a prepaid account. The system helps to speed traffic through toll plazas.

Sensors such as seismic sensors may be read using RFID transceivers, greatly simplifying remote data collection.

In January 2003, Michelin announced that it has begun testing RFID transponders embedded into tires. After a testing period that is expected to last 18 months, the manufacturer will offer RFID-enabled tires to car-makers. Their primary purpose is tire-tracking in compliance with the United States Transportation, Recall, Enhancement, Accountability and Documentation Act (TREAD Act).

Potential uses

RFID tags are often envisioned as a replacement for UPC bar-codes, having a number of important advantages over the older bar-code technology. RFID codes are long enough that every RFID tag may have a unique code, while UPC codes are limited to a single code for all instances of a particular product. The uniqueness of RFID tags means that a product may be individually tracked as it moves from location to location, finally ending up in the consumer's hands. This may help companies to combat theft and other forms of product loss. It has also been proposed to use RFID for point-of-sale store checkout to replace the cashier with an automatic system, with the option of erasing all RFID tags at checkout and paying by credit card or inserting money into a payment machine. This has to a limited extent alread been implemented at some stores[1].

An organization called EPCglobal is working on a proposed international standard for the use of RFID and the Electronic Product Code (EPC) in the identification of any item in the supply chain for companies in any industry, anywhere in the world. The organization's board of governors includes representatives from EAN International, Uniform Code Council, The Gillette Company, Procter & Gamble, Wal-Mart, Hewlett-Packard, Johnson & Johnson, and Auto-ID Labs.

Many somewhat far-fetched uses, such as allowing a refrigerator to track the expiration dates of the food it contains, have also been proposed, but few have moved beyond the prototype stage.

Controversy

How would you like it if, for instance, one day you realized your underwear was reporting on your whereabouts? [2] - California Senator Debra Bowen, at a 2003 hearing

The use of RFID technology has engendered considerable controversy and even product boycotts. The four main privacy concerns regarding RFID are:

  • The purchaser of an item will not necessarily be aware of the presence of the tag or be able to remove it;
  • The tag can be read at a distance without the knowledge of the individual;
  • If a tagged item is paid for by credit card or in conjunction with use of a loyalty card, then it would be possible to tie the unique ID of that item to the identity of the purchaser; and
  • Tags create, or are proposed to create, globally unique serial numbers for all products, even though this creates privacy problems and is completely unneccessary for most applications.

Most concerns revolve around the fact that RFID tags affixed to products remain functional even after the products have been purchased and taken home, and thus can be used for surveillance, and other nefarious purposes unrelated to their supply chain inventory functions. Although RFID tags are only officially intended for short-distance use, they can be interrogated from greater distances by anyone with a high-gain antenna, potentially allowing the contents of a house to be scanned at a distance. Even short range scanning is a concern if all the items detected are logged in a database every time a person passes a reader, or if it is done for nefarious reasons (e.g., a mugger using a hand-held scanner to obtain an instant assessment of the wealth of potential victims). With permanent RFID serial numbers, an item leaks unexpected information about a person even after disposal; for example, items that are resold, or given away, enable mapping of a person's social network.

Another privacy issue is due to RFID's support for a singulation (anti-collision) protocol. This is the means by which a reader enumerates all the tags responding to it without them mutually interfering. The structure of the most common version of this protocol is such that all but the last bit of each tag's serial number can be deduced by passively eavesdropping on just the reader's part of the protocol. Because of this, whenever RFID tags are near to readers, the distance at which a tag's signal can be eavesdropped is irrelevant; what counts is the distance at which the much more powerful reader can be received. Just how far this can be depends on the type of the reader, but in the extreme case some readers have a maximum power output (4 W) that could be received from tens of kilometres away.

The potential for privacy violations with RFID was demonstrated by its use in a pilot program by the Gillette Company, which conducted a "smart shelf" test at a Tesco in Cambridge. They automatically photographed shoppers taking RFID-tagged safety razors off the shelf, to see if the technology could be used to deter shoplifting. [3]

The controversy was furthered by the accidental exposure of a proposed Auto-ID consortium public relations campaign that was designed to "neutralize opposition" and get consumers to "resign themselves to the inevitability of it" whilst merely pretending to address their concerns. [4]

The standard proposed by EPCglobal includes privacy-related guidelines for the use of RFID-based EPC. These guidelines [5] include the requirement to give consumers clear notice of the presence of EPC and to inform them of the choice that they have to discard, disable or remove EPC tags. These guidelines are non-binding, and only partly meet the joint position statement of 46 multi-national consumer rights and privacy groups.

See privacy external links for privacy rights organizations on the topic