Jump to content

Quasi-complete space

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In functional analysis, a topological vector space (TVS) is said to be quasi-complete or boundedly complete[1] if every closed and bounded subset is complete.[2] This concept is of considerable importance for non-metrizable TVSs.[2]

Properties

Examples and sufficient conditions

Every complete TVS is quasi-complete.[7] The product of any collection of quasi-complete spaces is again quasi-complete.[2] The projective limit of any collection of quasi-complete spaces is again quasi-complete.[8] Every semi-reflexive space is quasi-complete.[9]

The quotient of a quasi-complete space by a closed vector subspace may fail to be quasi-complete.

Counter-examples

There exists an LB-space that is not quasi-complete.[10]

See also

References

  1. ^ Wilansky 2013, p. 73.
  2. ^ a b c d e Schaefer & Wolff 1999, p. 27.
  3. ^ Schaefer & Wolff 1999, p. 201.
  4. ^ Schaefer & Wolff 1999, p. 110.
  5. ^ a b Schaefer & Wolff 1999, p. 142.
  6. ^ Trèves 2006, p. 520.
  7. ^ Narici & Beckenstein 2011, pp. 156–175.
  8. ^ Schaefer & Wolff 1999, p. 52.
  9. ^ Schaefer & Wolff 1999, p. 144.
  10. ^ Khaleelulla 1982, pp. 28–63.

Bibliography

  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
  • Wong, Yau-Chuen (1979). Schwartz Spaces, Nuclear Spaces, and Tensor Products. Lecture Notes in Mathematics. Vol. 726. Berlin New York: Springer-Verlag. ISBN 978-3-540-09513-2. OCLC 5126158.