Talk:Dedekind group
Appearance
This article is rated B-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | |||||||||||
|
Axiom of choice
The existence of bases for vector spaces is equivalent to the axiom of choice. The group B only needs to be a vector space over the field with 2 elements. It does not need to have a basis without the axiom of choice. GeoffreyT2000 (talk) 20:37, 7 March 2015 (UTC)
"All abelian groups are Dedekind groups. A non-abelian Dedekind group is called a Hamiltonian group."
this doesn't make sense. i suppose what it is meant to say is that Dedekind groups are Hamiltonian groups that are Abelian (Hamiltonian superset of Dedekind)? --sofias. (talk) 09:59, 12 September 2017 (UTC)
- What do you mean? Dedekind groups may or may not be Abelian, but all Abelian groups are Dedekind. A group is called a Hamilton group if it is Dedekind and non-abelian. So, a Dedekind group is either an Abelian group or a Hamiltonian group. – Tea2min (talk) 12:07, 12 September 2017 (UTC)