Jump to content

User talk:Stca74

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Mathematics CotW

Hey Stca, I am writing you to let you know that the Mathematics Collaboration of the week(soon to "of the month") is getting an overhaul of sorts and I would encourage you to participate in whatever way you can, i.e. nominate an article, contribute to an article, or sign up to be part of the project. Any help would be greatly appreciated, thanks--Cronholm144 00:13, 14 May 2007 (UTC)[reply]

Hello

I thought say hello, and thank you for your interesting comments at WT:WPM, even if we are not entirely in agreement. Actually, I was prompted to stop by because I saw your comment at User talk:Edgerck on the cross product. I was about to make precisely the same point, but wouldn't have done it nearly as well as you did: your comment about the product of real numbers being a pseudoreal was particularly nice! I hope you continue to enjoy it here. Geometry guy 14:40, 22 May 2007 (UTC)[reply]

Hello, and thanks for the compliments. I do quite enjoy it here, yes. Let's see, however, for how much longer I manage to have this luxury of some spare time to devote to Wikipedia. In any case, plans for what to do here keep accumulating like unread novels at my bedside... As you've seen in my comments elsewhere, I've become convinced that Wikipedia's coverage of quite a few (if not all) areas of maths require more top-down planning and structure: we have now too many gaps and overlaps as well as seriously uneven coverage due to (often very good) individual articles springing up on random topics based on authors' impulses to write them up. I've started to work on a plan on how the needed reorganisation could look like for algebraic topology (I thought about algebraic geometry first as a topic closer to my own turf but came to the conclusion that editorial complications there are harder and that topology should work as a test case). I've been planning to post a note to the Wikipedia talk :WikiProject Mathematics page with link to the outline once I get it done. If you wish, feel free to have a look at a work in progress and comment — the page is here. Stca74 17:50, 22 May 2007 (UTC)[reply]

FLT

Do you have any comments on Fermat's last theorem. I put it up for A-Class review. It seems that it needs expert help! Geometry guy 21:34, 12 June 2007 (UTC)[reply]

Not exactly my expertise (the modular form side of things is not one of my strengths...), but I'll see what I can do. Maybe start adding the structure to the description of the proof. However, this will not likely happen over the next few days. Stca74 18:05, 14 June 2007 (UTC)[reply]
Anything you can do will be much appreciated! Geometry guy 19:22, 14 June 2007 (UTC)[reply]

Heian Palace

First of all, congratulations on your GA on this article. This is a very nice piece of work, that should easily go through FAC. However, as it was pointed at GA/R, you will definitely need the page numbers for that. If you do have the book but don't have time to find the exact place, you might try through Google Books, as in this example: by using the research thingy, you can find that buraken is talked about in page 713. I hope this can help you in building other great articles on very interesting subjects.

Sincerely, --SidiLemine 18:33, 16 July 2007 (UTC)[reply]

Thanks for kind words and the encouragement to push the article towards FA. I agree with the page number point for FA articles, and will put those in order. As for Google Books, I think that's an excellent advice. Indeed, that's the source I used to locate a few of the references in books read but not at hand.
Regards, Stca74 08:30, 18 July 2007 (UTC)[reply]

WikiProject Japan taskforces

In order to encourage more participation, and to help people find a specific area in which they are more able to help out, we have organized taskforces at WikiProject Japan. Please visit the Participants page and update the list with the taskforces in which you wish to participate. Links to all the taskforces are found at the top of the list of participants.

Please let me know if you have any questions, and thank you for helping out! ···日本穣? · Talk to Nihonjoe 02:06, 8 August 2007 (UTC)[reply]

Heian Palace

Hi Stca74, and congratulations on bringing Heian Palace to Featured Article status. It's remarkable that the article is so purely the work of one person. Again, congratulations! Fg2 06:07, 25 September 2007 (UTC)[reply]

Hi, Fg2, and thanks for the kind remarks! This one started in May with the modest intention of creating a stub for the old palace, but grew quite quickly... The motivation was first just to correct a few statements made in the article on Kyoto Gosho, which made it appear that the current palace dates from the Heian period. It seems that some topics are sufficiently esoteric that it is at the same time possible and necessary to work on your own on them — the same appears to be happening with some more technical maths articles like Fibred category that I'm editing at the moment. But while edits may be mostly mine in Heian Palace, it certainly would be much worse without the comments received in Peer Review, the GA process and now in FA process. Despite some moderately excessive requests at times, the Wikipedia collaboration model appears to work nicely. Stca74 10:53, 25 September 2007 (UTC)[reply]

Limit superior and limit inferior

The general definitions in Limit superior and limit inferior for the limits superior and inferior of sets and filter bases look too general to me. In particular, they impose no conditions whatsoever on the relationship between the topology of the space involved and its partial ordering. Without some sort of order compatibility, the limits defined don't seem particularly meaningful. Also, for the set definition, the article suggests ambiguously that the ordering should be a complete lattice, which may be too restrictive as it still makes sense to talk about limits superior and inferior even in contexts where they are not guaranteed to exist. Do you know the most common definitions for these terms? If so, could you make sure the article matches them? Dfeuer (talk) 20:46, 30 December 2007 (UTC)[reply]

In fact the whole article seems to be a bit of a mess. The section on sequences of real numbers contains way too much secondary trivia, lim inf and lim sup of real-valued functions is not even defined, the metric space (why metric?) definition does not impose any order structure on the codomain and the definitions do not even make sense,...
As for the definition for filters, first of all the most important definitions, those of lim inf and lim sup of a real-valued function with respect to a filter (base) are missing. And you're right, to have a meaningful theory one should link the topology and order structure together - a natural way would be to require that the topology be the order topology (generated by open intervals) specified by the order structure, which one would assume to be a linearly ordered complete lattice (the latter being equivalent to the topological space being compact). Then lim inf and lim sup of a filter as well as of a function with values in such ordered topological space with respect to a filter would behave as expected. Whether it makes sense for some purposes to consider more general order structures I do not know.
Given that there has apparently been quite some heated argumentation on the talk page, and given the amount of work the page would need, I'm somewhat hesitant to jump into editing it. I could do some expansion and fixing around filters, though (seems that by staying way from the usual undergrad curriculum one avoids most useless edit wars...). Stca74 (talk) 11:05, 31 December 2007 (UTC)[reply]
I completely forgot to watch for a response here. I'm sorry about that. I'm not yet convinced that the space should be required to be a complete lattice, although requiring it to be bounded-complete is likely sensible. Of course, the big question is how this actually is defined by working mathematicians, which is something I don't know. The same goes for what sort of order is required. Requiring the order topology certainly works, but it's conceivable that a weaker condition would suffice to give interesting results. One possibility might be requiring that for each subset with an upper bound, , or something vaguely like that.Dfeuer (talk) 03:18, 10 January 2008 (UTC)[reply]

unrelated to wikipedia

Hello, you seem like someone who's interested in sharing your knowledge. I see you have a PhD in alg. geom. and work in the financial sector. I may soon be completing mine, studying 4-manifolds. I had some questions about your vocational experiences. If you're curious or willing to talk to me could you send me an email - jwilliam at math . utexas . edu? Orthografer (talk) 01:38, 4 April 2008 (UTC)[reply]

groups FAC

Hi,

thanks again for your FAC comments. I've replied to all of your points. Most of them are covered, I think, but I would like to have your updated opinion, especially 5) and 8), once you have a free moment. Jakob.scholbach (talk) 22:43, 5 September 2008 (UTC)[reply]

Thanks for the message; it's a pleasure to contribute, if only through comments this time - Groups will apparently be the first "real" mathematics article to get to FA (General relativity is more physics, and the rest either biographies or rather trivial maths). Comments just left on the FAC page. Stca74 (talk) 14:55, 7 September 2008 (UTC)[reply]

Easy as pi?: Making mathematics articles more accessible to a general readership

The discussion, to which you contributed, has been archived, with very much additional commentary,
at Wikipedia:Village pump (proposals)/Archive 35#Easy as pi? (subsectioned and sub-subsectioned).
A related discussion is at
(Temporary link) Talk:Mathematics#Making mathematics articles more accessible to a general readership and
(Permanent link) Talk:Mathematics (Section "Making mathematics articles more accessible to a general readership"). Another related discussion is at
(Temporary link) Wikipedia talk:WikiProject Mathematics#Making mathematics articles more accessible to a general readership and
(Permanent link) Wikipedia talk:WikiProject Mathematics (Section "Making mathematics articles more accessible to a general readership").
-- Wavelength (talk) 01:42, 29 September 2008 (UTC)[reply]

Hi - I posted the section with the same name on my talk page. Could you take part in discussion ? Thanks ARP Apovolot (talk) 01:12, 27 October 2008 (UTC)[reply]

Hi Stca,

I have asked for a GA review at the round table, but people are busy/dizzy with LateX formatting and icon questions ;) But I remember your thorough review of the group article, so if you have a moment, could you review vector spaces? This is the page. Thanks a lot. Jakob.scholbach (talk) 15:28, 28 November 2008 (UTC)[reply]

Hi Jakob,
Thanks for confidence. I've unfortunately been too busy at work to respond earlier. The article appears to be very comprehensive - I just left a few minor comments on tensor products on the talk page. Great work! Stca74 (talk) 10:50, 7 December 2008 (UTC)[reply]
I was reading your recent post at the talk page with interest. I had not realized that such a staple of dualities is lurking behind the harmless bidual of vector space... Just out of curiosity, one related question: the key point in Poincaré or Verdier duality is, as far as I understand, not only the existence of the 6 functors, but also f!f! = (R)ff(d)[2d] (twist and shift) when f is smooth of relative codimension d, right? What would be the analogous "normalization" in the coherent/Serre duality situation? (Coherent duality is a mess, unfortunately) Cheers, Jakob.scholbach (talk) 21:09, 13 December 2008 (UTC)[reply]

(←) Yes, in the topological (and étale, and D-module) theory the key is that f! is right adjoint of R f! (roles of "!" and "*" mixed for D-modules, however). For the coherent duality, one usually deals with the case where f is proper, hence R f! = R f*. Now in more precise terms, one has the following local version of the adjunction:

If f is smooth of relative dimension n, then

where ωX/Y[n] is the top exterior power of the sheaf ΩX/Y of relative differentials, shifted n spaces to the left. More generally f! can be more complicated. To recover the ordinary Serre duality for smooth projective X over a field k apply the above to the unique morphism to S = Spek(k) and on S to the structure sheaf, which is just k sitting on the only point of S. Then applying RΓ to both sides of the adjunction one gets

,

whence by taking cohomology and minding the shift

To link this to biduality, define first dualising complexes: if X is a (locally Noetherian) scheme, then an object of the bounded coherent derived category is a dualising complex if (i) it is quasi-isomorphic to a bounded complex of injective sheaves, and (ii) the duality functor

satisfies the following biduality: the natural map of functors

is isomorphism. Notice that the simple algebraic biduality of vector spaces becomes the statement that on Spec(k) the strukture sheaf k is dualising.

The dualising functors and complexes and the various duality theorems are related in a number of ways, both in this coherent sheaf set-up and in the other contexts mentioned above. First, the functor f! takes dualising complexes to dualising complexes. Next, the dualising functors switch between the functors f! and f* and between R f! and R f*. More precisely, let be a dualising complex on Y and a corresponding dualising complex on X. Denote by DY and DX the corresponding dualising functors. Then:

and

For the coherent duality the first statement says that the derived direct image commutes with the duality functors, and is simply an application of the adjunction property expressing the general duality result (first displayed formula above). Similarly, taking into account the biduality property, one has the following representation of the functor f!:

Hope this clarifies the picture. Hartshorne's Residues and Duality and Grothendieck's Exposé I in SGA 5 are good sources for further information in the coherent and étale settings, while Iversen's book treats the topological (locally compact spaces) case and several texts (e.g., Mebkhout or Björk) on D-modules cover the (somewhat more complicated) picture in that context.

And you're right, the article on coherent duality needs work. As do the ones on Verdier duality, and Poincaré duality and most other duality theorems. Stca74 (talk) 14:57, 14 December 2008 (UTC)[reply]

Thanks muchly. I think it might be good to more or less copy this to one of the said articles. Also, Arcfrk and PaulTanenbaum seem to be interested in duality, so perhaps we can write something together. Currently I'm on matrices, and I also have to resolve whether I'll try and push v.sp. to FA status, but the duality topic is indeed intriguing, and would (should we get there) be the first maths GA/FA article appealing to experts.
Is there a similar sheafish/category-minded characterisation of reflexive top.v.sp.? Jakob.scholbach (talk) 09:39, 15 December 2008 (UTC)[reply]

Hi Stca4!

I noticed your recent improvements to measure (mathematics) and am glad that someone has taken the time to improve the article! But I just wanted to confirm some dubious points in the lead:

a) It is written, "there are in general infinitely many different measures on a given set, each assigning different "sizes" for subsets". This seems incorrect because the empty set has only one measure on its power set (the measure of the empty set must be either 0 or infinity, depending on the conventions used). Maybe, there should be a discussion on the distinction between a "measure" and a "set function". I know you have noted this later on, but maybe it should be emphasized.

b) There is also the problem (which was there before you edited it) of the definition of a measure. In the first sentence of the lead, it is written that every subset has a measure. Without confusing the reader, there should be emphasis that the domain of the measure must be a sigma-algebra and not neccesarily be equal to the power set in question (or a sigma-ring depending on convention).

On the other hand, your lead is far better than the initial one because it gives the applications of measure theory to probability. P.S Could you please respond on the talk page of the article? --PST 10:22, 28 February 2009 (UTC)[reply]

Hi,
And thanks for the message. I'll reply briefly here to avoid having to copy your comments to the article talk page (to simplify, perhaps you could leave the comments on article talk page, and just leave a notification to user talk page to alert an editor?).
For the number of measures on the empty set, you are of course right. However, I feel the lead is not the best place to elaborate on (essentially trivial) technical exceptions such as this; I would not object to qualifying the "given set" by adding "non-empty", even though that comes in my mind close to being a bit pedantic.
As for the issue with "each" in the first sentence, you're obviously right again. I left it there after considering the options — given that the true state of affairs is revealed in the following paragraph, I preferred slight sloppiness to a convoluted sentence structure or introducing too many concepts in the first sentence of the lead. However, I did now add "suitable" to qualify the subsets on which a measure is defined. While I'm afraid this is not going to help the reader too much, at least the next paragraph clarifies the situation and the meaning of "suitable". This way someone reading only the first paragraph is not left with a technically incorrect claim.
The article is still quite seriously incomplete (I would classify it as Start class rather than B). In particular, relation between integral and measure should be developed. In addition a host of topics is still missing: discussion of Lebesgue-measurable sets (and non-measurable ones!), measurable functions, products of measures, outer measure, signed measures and Hahn decomposition, complex and more general vectorial measures, absolute value of a complex measure, key properties of bounded measures (including the norm), vague and other topologies on spaces of measures, support of a measure.
Br, Stca74 (talk) 16:59, 28 February 2009 (UTC)[reply]

Hi, I'm trying to gather some people working on duality article. Are you up to it? I'd like to develop the article to Good Article standard, but I think this is a broad topic so more hands/eyes would be good. Jakob.scholbach (talk) 16:47, 8 March 2009 (UTC)[reply]

Hi Jakob,
Thanks for the invitation to work on Duality, this is a worthwhile and interesting initiative. However, I'm afraid the time I can give this work short term is extremely limited, perhaps some random hours in the weekends. I'll see what I can do. Initial thought about the article is that while developing a comprehensive framework to discuss the various duals and dualities would be great, one could easily move into original research. This may make it necessary to make the article largely a summary, with wikilinks to individual dualities. I cannot think of many sources that would provide an overall framework covering all relevant dualities. Best, Stca74 (talk) 12:08, 9 March 2009 (UTC)[reply]

Asian 10,000 Challenge invite

Hi. The Wikipedia:WikiProject Asia/The 10,000 Challenge has recently started, based on the UK/Ireland Wikipedia:The 10,000 Challenge and Wikipedia:WikiProject Africa/The 10,000 Challenge. The idea is not to record every minor edit, but to create a momentum to motivate editors to produce good content improvements and creations and inspire people to work on more countries than they might otherwise work on. There's also the possibility of establishing smaller country or regional challenges for places like South East Asia, Japan/China or India etc, much like Wikipedia:The 1000 Challenge (Nordic). For this to really work we need diversity and exciting content and editors from a broad range of countries regularly contributing. At some stage we hope to run some contests to benefit Asian content, a destubathon perhaps, aimed at reducing the stub count would be a good place to start, based on the current Wikipedia:WikiProject Africa/The Africa Destubathon which has produced near 200 articles in just three days. If you would like to see this happening for Asia, and see potential in this attracting more interest and editors for the country/countries you work on please sign up and being contributing to the challenge! This is a way we can target every country of Asia, and steadily vastly improve the encyclopedia. We need numbers to make this work so consider signing up as a participant! Thank you. --Ser Amantio di NicolaoChe dicono a Signa?Lo dicono a Signa. 03:03, 21 October 2016 (UTC)[reply]

Hi. We're into the last five days of the Women in Red World Contest. There's a new bonus prize of $200 worth of books of your choice to win for creating the most new women biographies between 0:00 on the 26th and 23:59 on 30th November. If you've been contributing to the contest, thank you for your support, we've produced over 2000 articles. If you haven't contributed yet, we would appreciate you taking the time to add entries to our articles achievements list by the end of the month. Thank you, and if participating, good luck with the finale!

I have nominated Heian Palace for a featured article review here. Please join the discussion on whether this article meets the featured article criteria. Articles are typically reviewed for two weeks. If substantial concerns are not addressed during the review period, the article will be moved to the Featured Article Removal Candidates list for a further period, where editors may declare "Keep" or "Delist" in regards to the article's featured status. The instructions for the review process are here. Bumbubookworm (talk) 12:15, 15 October 2022 (UTC)[reply]

Congrats

The Article Rescue Barnstar
Thank you for all your hard work on Heian Palace, leading to it being kept at featured article status! It was a pleasure to work with you. Firefangledfeathers (talk / contribs) 03:53, 13 March 2023 (UTC)[reply]

Infrabarrelled space

I closed Talk:Infrabarrelled space#Merger proposal ready for your merge. Shhhnotsoloud (talk) 21:08, 29 May 2023 (UTC)[reply]

The Black Sword Hack moved to draftspace

Thanks for your contributions to The Black Sword Hack. Unfortunately, I do not think it is ready for publishing at this time because it has no sources and it needs more sources to establish notability. I have converted your article to a draft which you can improve, undisturbed for a while.

Please see more information at Help:Unreviewed new page. When the article is ready for publication, please click on the "Submit for review" button at the top of the page OR move the page back. BoyTheKingCanDance (talk) 11:13, 14 November 2024 (UTC)[reply]

New TTRPG articles

Hi Stca74! I noticed that you created a few new articles on TTRPG games, including moving some from draft space. Looking through the sources, I don't see any way that these are ready for mainspace. Articles on Wikipedia should be supported by reliable, independent, secondary sources. Most of the citations are to primary/publisher sources and unreliable, anonymous or pseudonymous fansites. I suggest moving them back to Draft space where you can work on them.

I'm sorry to say but I don't believe they'd survive deletion discussions in their current states. I briefly looked for sources on The Black Sword Hack and didn't find any that would suggest it meets our notability guidelines. Woodroar (talk) 18:04, 14 November 2024 (UTC)[reply]

Hi! As you probably know, it is extremely hard / impossible to find conventional published secondary sources on recent independent and (almost) non-commercial RPG materials and similar items not covered by mainstream press. So I will leave the new stubs as they are and hope someone else has time and interest to "save" them in case their existence on the platform is challenged. Happy add more content if it begins to seem deletion is not likely simply due to natures of references. Stca74 (talk) 05:34, 15 November 2024 (UTC)[reply]

ArbCom 2024 Elections voter message

Hello! Voting in the 2024 Arbitration Committee elections is now open until 23:59 (UTC) on Monday, 2 December 2024. All eligible users are allowed to vote. Users with alternate accounts may only vote once.

The Arbitration Committee is the panel of editors responsible for conducting the Wikipedia arbitration process. It has the authority to impose binding solutions to disputes between editors, primarily for serious conduct disputes the community has been unable to resolve. This includes the authority to impose site bans, topic bans, editing restrictions, and other measures needed to maintain our editing environment. The arbitration policy describes the Committee's roles and responsibilities in greater detail.

If you wish to participate in the 2024 election, please review the candidates and submit your choices on the voting page. If you no longer wish to receive these messages, you may add {{NoACEMM}} to your user talk page. MediaWiki message delivery (talk) 00:13, 19 November 2024 (UTC)[reply]