Jump to content

Wax ester

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Triacontanyl palmitate, a typical wax ester, is derived from triacontanyl alcohol and palmitic acid.

A wax ester (WE) is an ester of a fatty acid and a fatty alcohol. Wax esters are the main components of three commercially important waxes: carnauba wax, candelilla wax, and beeswax.[1]

Wax esters are formed by combining one fatty acid with one fatty alcohol:

Some wax esters are saturated, and others contain unsaturated centers. Saturated wax esters have higher melting points and are more likely to be solid at room temperature. Unsaturated wax esters have a lower melting point and are more likely to be liquid at room temperature. Both fatty acids and fatty alcohols may be made of different carbon chain length. In the end, there are many different possible combinations of fatty acids and fatty alcohols and each combination will have a unique set of properties in terms of steric orientation and phase transition.

The chain lengths of fatty acids and fatty alcohols in naturally occurring wax esters vary. The fatty acids in wax esters derived from plants typically range from C12-C24, and the alcohols in plant waxes tend to be very long, typically C24-C34.[2] The fatty acids and fatty alcohols of wax esters from different marine animals show major differences. Wax esters of sperm whales contain C12 fatty acids and C14 fatty acid and alcohols. Monounsaturated C18 is the dominant fatty acid of most fish wax esters, with the exception of roe wax esters, which have sizeable amounts of polyunsaturated fatty acids such as 20:5n-3, 22:5n-3 and 22:6n-3. The fatty acids of wax esters of certain zooplankton largely reflects the fatty acids of phytoplankton, and contain high amounts of C14 and C16, as well as 20:5n-3, 22:5n-3 and 22:6n-3 and monounsaturated C20 and C22 are the principal fatty alcohols.[3]

Natural sources

Beeswax is 70–80% wax esters. These esters are derived from C12-C20 fatty acids. The remaining content of beeswax are wax acids (>C20) and paraffins. In 1976, an estimated 10,000–17,000 tons were harvested. The primary use was in candles. The esters in carnauba wax consist of ca 20% cinnamic acid derivatives, which may be related to the hardness of this wax.[1]

Other, minor wax esters

Wax esters are commonly found in shellfish and as a part of the cuticle of arthropods. In leaves, they prevent loss of water.[4]

Nuts from jojoba contain about 52% oil, 97% of which are wax esters. These wax esters, which are monounsaturated, are very similar to sperm oil.[1]

Marine organisms like dinoflagellates, pelagic invertebrates, and fishes store low-density wax esters in their swim bladders or other tissues to provide buoyancy.[5]

Wax esters per se are a normal part of the diet of humans as a lipid component of certain foods, including unrefined whole grain cereals, seeds, and nuts.[2] Wax esters are also consumed in considerable amounts by certain populations that regularly eat fish roe[6] or certain fish species. That said, wax esters are not typically consumed in appreciable quantities in diets containing many processed foods.[2]

Metabolism

Lipases and carboxylesterases that hydrolyze triglycerides have demonstrated enzymatic activity towards wax esters. Kinetic data show that EPA and DHA provided as wax esters reaches a maximal concentration at approximately 20 h post-consumption, and may indicate delayed absorption of the fatty acids.[7]

Bioavailability

There has been a common understanding that wax esters are poorly absorbed by humans, partly due to outbreaks of the purgative effect named keriorrhea, associated with consumption of oilfish (Ruvettus pretiosus) and escolar (Lepdocybium flavobrunneum). Fillets from these fish species contain up to 20% fat, where 90% of the fat comes as wax esters, resulting in a typical intake of more than 30 000 mg wax esters from one single meal. Orange roughy (Hoplostethus atlanticus) is an attractive food fish with 5.5% fat, where 90% of the fat comes as wax esters. Consumption of this fish gives no unpleasant adverse effects, most likely due to the relatively low fat content that provides approximately 10 000 mg wax ester per 200 grams serving of fish.

In 2015 a randomized, two-period crossover human study, showed that EPA and DHA from oil extracted from the small crustacean Calanus finmarchicus was highly bioavailable and the study concluded that oil from C. finmarchicus could serve as a relevant source of the healthy omega-3 fatty acids EPA, DHA and SDA. 86% of the oil from C. finmarchicus comes as wax esters.[7]

Studies on mice have shown that, despite consuming diets containing similar amounts of EPA and DHA, blood levels of both EPA and DHA were significantly higher in mice fed a diet supplemented with oil from C. finmarchicus compared to those fed an EPA+DHA ethyl ester enriched diet.[8] Furthermore, oil from C. finmarchicus has been observed to have beneficial effects on obesity-related abnormalities in rodent models of diet-induced obesity at EPA and DHA fatty acid concentrations considerably lower than the concentrations used in similar earlier studies using other sources of EPA and DHA.[9][10] Taken together, based on the available in vitro data, animal data, and the findings of the Cook et al. study[7] demonstrating that circulating concentrations of EPA and DHA remained elevated up to 72 h after a single serving of 4 g oil from C. finmarchicus the hydrolyzed products of wax ester digestion are most likely slowly absorbed in vivo.

Role as a nutrient

Marine wax esters have become a focus of attention due to documented positive effects on widespread medical conditions related to certain diets.[9][10] Harvesting on a lower trophic level on short-lived organisms would be more sustainable and the products would be less prone to environmental toxins and pollutants. Wax ester-based products from the small crustacean Calanus finmarchicus have been commercialized and sold by the Norwegian company Zooca.[11]

See also

References

  1. ^ a b c Uwe Wolfmeier; Hans Schmidt; Franz-Leo Heinrichs; Georg Michalczyk; Wolfgang Payer; Wolfram Dietsche; Klaus Boehlke; Gerd Hohner; Josef Wildgruber (2002). "Waxes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a28_103. ISBN 978-3-527-30673-2..
  2. ^ a b c Hargrove, J.L. (2004). "Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes". Experimental Biology and Medicine. 229 (3): 215–226. doi:10.1177/153537020422900301. PMID 14988513. S2CID 38905297.
  3. ^ Kolattukudy, P.E. (1976). "Introduction to natural waxes". Chemistry and Biochemistry of Natural Waxes.
  4. ^ de Renobales, M (1991). The physiology of the insect epidermis. CSIRO. pp. 240–251.
  5. ^ Phleger, C.F. (1998). "Buoyancy in marine fishes: direct and indirect role of lipids". Am Zool. 38 (2): 321–330. CiteSeerX 10.1.1.564.7062. doi:10.1093/icb/38.2.321. JSTOR 4620147.
  6. ^ Bledsoe, G.E. (2003). "Caviars and fish roe products". Crit Rev Food Sci Nutr. 43 (2003): 317–356. doi:10.1080/10408690390826545. PMID 12822675. S2CID 35039858.
  7. ^ a b c Cook, C. M.; Larsen, T. S.; Derrig, L. D.; Kelly, K. M.; Tande, K. S. (2016). "Wax Ester Rich Oil from the Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption". Lipids. 51 (10): 1137–1144. doi:10.1007/s11745-016-4189-y. PMID 27604086. S2CID 3972582.
  8. ^ Eilertsen, K.E. (2012). "A wax ester and astaxanthin-rich extract from the marine copepod Calanus finmarchicus attenuates atherogenesis in female apolipoprotein E-deficient mice". J Nutr. 142 (2012): 508–512. doi:10.3945/jn.111.145698. PMID 22323762.
  9. ^ a b Hoper, A.C. (2013). "Oil from the marine zooplankton Calanus finmarchicus improves the cardiometabolic phenotype of diet-induced obese mice". Br J Nutr. 110 (2013): 2186–2193. doi:10.1017/S0007114513001839. PMID 23768435.
  10. ^ a b Hoper, A.C. (2014). "Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice". J Nutr. 144 (2014): 164–169. doi:10.3945/jn.113.182501. PMID 24285691.
  11. ^ "Calanus".

Further reading