Ir al contenido

N-esfera

De Wikipedia, la enciclopedia libre
Esta es una versión antigua de esta página, editada a las 17:55 26 jun 2020 por Wiki LIC (discusión · contribs.). La dirección URL es un enlace permanente a esta versión, que puede ser diferente de la versión actual.
Vista alámbrica de una 2-esfera como un operador de proyección
Así como una proyección estereográfica puede representar la superficie de una esfera en un plano, también se puede proyectar una 3-esfera en el espacio tridimensional. Esta imagen muestra las tres direcciones de coordenadas proyectadas en el espacio tridimensional: paralelos (rojo), meridianos (azul) e hipermeridianos (verde). Debido a la propiedad de conformidad de la proyección estereográfica, las curvas se cruzan entre sí ortogonalmente (en los puntos amarillos) al igual que en 4D. Todas las curvas son circunferencias: las curvas que intersecan 0,0,0,1 tienen un radio infinito (se proyectan como líneas rectas)

En matemáticas, una n-esfera (o hiperesfera) es la generalización de la «esfera» a un espacio euclídeo de dimensión arbitraria. En otras palabras, la n-esfera es una hipersuperficie del espacio euclídeo , notada en general . Constituye uno de los ejemplos más sencillos de variedad matemática.

Desde un punto de vista analítico, una n-esfera es un espacio topológico que es homeomorfo a una n-esfera estándar, que es el conjunto de puntos en un espacio euclídeo (n + 1)-dimensional que se encuentran a una distancia constante r respecto a un punto fijo, llamado centro. Es la generalización de una esfera ordinaria en el espacio tridimensional ordinario. El radio de una esfera es la distancia constante de sus puntos al centro. Cuando la esfera tiene un radio unidad, es habitual llamarla n-esfera unidad, o simplemente n-esfera por brevedad. En términos de la norma estándar, una n-esfera se define como

y una n-esfera de radio r se puede definir como

La 0-esfera es un par de puntos sobre una recta a una unidad de distancia del origen, la 1-esfera es una circunferencia en el plano y la 2-esfera es una esfera ordinaria dentro del espacio tridimensional.

La dimensión de una n-esfera es n, y no debe confundirse con la dimensión (n + 1) del espacio euclídeo en el que queda naturalmente embebida. Una n-esfera es la superficie o límite de una bola (n + 1) dimensional.

En particular:

  • El par de puntos en los extremos de un segmento (unidimensional) es una 0-esfera
  • Un circunferencia, que es el contorno unidimensional de un círculo (bidimensional), es una 1-esfera
  • La superficie bidimensional de una bola (tridimensional) en un espacio tridimensional es una 2-esfera, a menudo simplemente llamada esfera
  • La frontera tridimensional de una 4-bola (cuatro dimensiones) en el espacio euclídeo tetradimensional, es un 3-esfera, también conocida como glomo
  • El límite n – 1 dimensional de una n-bola (n-dimensional) es una (n – 1)-esfera.

Para n ≥ 2, las n esferas que son variedades diferenciables pueden caracterizarse (hasta un difeomorfismo) como variedades n-dimensionales conexas de curvatura constante y positiva. Las n-esferas admiten varias otras descripciones topológicas: por ejemplo, se pueden construir pegando dos espacios euclidianos n-dimensionales, identificando el límite de un n-cubo con un punto, o (inductivamente) formando la suspensión de una (n − 1)-esfera. La 1-esfera es la 1-variedad que es una circunferencia, que no es simplemente conexa. La 0-esfera es la 0-variedad que consta de dos puntos, que ni siquiera es conexa.

Definición

Dado un espacio euclídeo E de dimensión n+1, A un punto de E, y R un número real estrictamente positivo, se le llama hiperesfera de centro A y radio R al conjunto de puntos M tales que su distancia a A vale exactamente R.

La n+1-tupla de puntos (x1,x2,…,xn+1) que están en una n-esfera (Sn) se representa con la ecuación:

,

donde el centro es el origen de coordenadas O (0,0,...,0).[1]​ Teniendo como datos un punto fijo llamado centro y el radio R, real positivo, siendo un punto cualquiera de la hiperesfera, la ecuación correspondiente es,[2][3]

o escrito en forma vectorial, como:

Descripción

Para cualquier número natural n, una n-esfera de radio r se define como el conjunto de puntos en el espacio euclídeo (n + 1) dimensional que están a una distancia r de un punto fijo c, donde r puede ser cualquier número real positivo y donde c puede ser cualquier punto en el espacio (n + 1) dimensional. En particular:

  • Una 0-esfera es un par de puntos {cr, c + r}, y es el límite de un segmento recto (1-bola)
  • Una 1-esfera es una circunferencia de radio r centrada en c, y es el límite de un disco (2-bola)
  • Una 2-esfera es un esfera bidimensional ordinaria en un espacio euclídeo tridimensional, y es el límite de una bola ordinaria (3-bola)
  • Una 3-esfera es una esfera tridimensional en un espacio euclidiano de 4 dimensiones.

Coordenadas euclídeas en el (n + 1)-espacio

El conjunto de puntos en el espacio (n + 1), (x1, x2, ..., xn+1), que definen una n-esfera, , está representado por la ecuación:

donde c = (c1, c2, ..., cn+1) es un punto central y r es el radio.

La n-esfera anterior existe en el espacio euclidiano (n + 1)-dimensional y es un ejemplo de n-variedad. La forma de volumen ω de una n-esfera de radio r viene dada por

donde es el dual de Hodge; véase Flanders (1989, §6.1) para una discusión y prueba de esta fórmula en el caso r = 1. Como resultado,


n-bola

El espacio encerrado por una n-esfera se llama (n + 1)-bola. Una (n + 1)-bola es cerrada si incluye la n-esfera, y es abierta si no incluye la n-esfera.

Específicamente:

  • Una 1-bola, un segmento, es el interior de una 0-esfera
  • Una 2-bola, un círculo, es el interior de una circunferencia (1-esfera)
  • Una 3-bola, una bola ordinaria, es el interior de una esfera (2-esfera)
  • Una 4-bola es el interior de una 3-esfera, y así sucesivamente

Descripción topológica

Topológicamente, una n-esfera se puede construir como una compactación en un punto del espacio euclidiano n-dimensional. Brevemente, la n-esfera puede describirse como Sn = Rn ∪ {∞}, que es un espacio euclidiano n-dimensional más un único punto que representa el infinito en todas las direcciones. En particular, si se elimina un único punto de una n-esfera, se convierte en homeomórfica a Rn. Esta circunstancia sustenta la base de la proyección estereográfica.[4]


Volumen y área de la superficie

Vn(R) y Sn(R) son el volumen n-dimensional de una n-bola y el área de la superficie de la n-esfera incrustada en la dimensión n + 1, respectivamente, ambas de radio R.

Las constantes Vn y Sn (para R = 1, la bola unitaria y la esfera) están relacionadas por las recurrencias:

Las superficies y los volúmenes también se pueden dar en forma cerrada:

donde Γ es la función gamma. Las deducciones de estas ecuaciones se dan en esta sección.

Gráficos de volúmenes (V) y de áreas de la superficie (S) de n-bolas de radio 1. Desplazar el cursor en el archivo SVG sobre un punto para resaltarlo y obtener su valor
En general, el volumen de la n-bola en el espacio euclidiano n y el área de la superficie de la n-esfera en el espacio euclidiano (n + 1)-dimensional, de radio R, son proporcionales a la potencia n del radio R (con diferentes constantes de proporcionalidad que varían con n). Se escribe Vn(R) = VnRn para el volumen de la n-bola y Sn(R) = SnRn para el área de la superficie de la n-esfera, ambas de radio R, donde Vn = Vn(1) y Sn = Sn(1) son los valores para el caso del radio unidad.

En teoría, se podrían comparar los valores de Sn(R) y Sm(R) para nm. Sin embargo, esto es algo sin sentido. Por ejemplo, si n = 2 y m = 3, es como comparar un número de metros cuadrados con un número diferente de metros cúbicos. La misma falta de sentido se aplica a una comparación de Vn(R) y Vm(R) para nm.

Fórmula del volumen

El volumen del espacio delimitado por una hiperesfera de dimensión n-1 y de radio R, que es una bola euclídea de dimensión n viene determinado por:

(1)

donde es la función gamma.

Nótese la particularidad de que se incrementa desde n=1 hasta un máximo y luego comienza a disminuir y tiende a cero cuando n tiende a infinito. En el caso que R=1 el volumen máximo se obtiene cuando n=5.

Por ejemplo, el volumen de una hiperfesfera, de radio R, en el espacio cuadridimensional aplicando la fórmula (1) para n=4 resulta

.

Ejemplos

La 0-bola consiste en un solo punto. La medida de Hausdorff en 0 dimensiones es el número de puntos en un conjunto. Entonces,

La 1-bola unidad es el intervalo [−1,1] de longitud 2. Entonces,

La 0-esfera consiste en sus dos puntos finales, {−1,1}. Entonces,

La 1-esfera unidad es la circunferencia unidad en el plano euclidiano, cuyo perímetro (medida unidimensional) mide

La región encerrada por la 1-esfera unidad es la 2-bola o disco unidad, que tiene un área (medida bidimensional) de

Análogamente, en el espacio euclidiano tridimensional, el área de la superficie (medida bidimensional) de la 2-esfera unidad está dada por

y el volumen incluido es la capacidad (medida tridimensional) de la 3-bola unidad, dada por

Recurrencias

El área de la superficie, o más adecuadamente, el volumen n-dimensional, de la n-esfera en el límite de la (n + 1)-bola de radio R está relacionado con el volumen de la bola por la ecuación diferencial

o, de manera equivalente, representando la n-bola unidad como la unión de (n − 1)-esferas concéntricas anidadas en forma de corona esférica,

Entonces,

También se puede representar la (n + 2)-esfera unidad como la unión de toros, cada uno el producto de un círculo (1-esfera) con una n-esfera. Siendo r = cos θ y r2 + R2 = 1, de modo que R = sin θ y dR = cos θ , entonces:

Desde S1 = 2π V0, la ecuación

se cumple para todos los n.

Esto completa la deducción de las recurrencias:

Formas cerradas

Combinando las recurrencias, se puede ver que

Entonces, es simple mostrar por inducción que para k,

donde !! denota el doble factorial, definido para números naturales impares 2k + 1 por (2k + 1)!! = 1 × 3 × 5 × ... × (2k − 1) × (2k + 1) y de manera similar para números pares (2k)!! = 2 × 4 × 6 × ... × (2k − 2) × (2k).

En general, el volumen en el espacio euclidiano n-dimensional de la n-bola unidad viene dado por

donde Γ es la función gamma, que satisface Γ(1/2) = π, Γ(1) = 1 y Γ(x + 1) = (x).

Multiplicando Vn por Rn, diferenciando con respecto a R, y luego configurando R = 1, se obtiene la forma cerrada

Otras relaciones

Las recurrencias se pueden combinar para dar una relación de recurrencia de "dirección inversa" para el área de la superficie, como se muestra en el diagrama:

En la imagen, n se refiere a la dimensión del espacio euclídeo de contorno, que también es la dimensión intrínseca del sólido cuyo volumen se enumera, pero que es 1 más que la dimensión intrínseca de la esfera cuya área de superficie se indica. Las flechas rojas curvas muestran la relación entre diferentes fórmulas para n. Los coeficientes de la fórmula en la punta de cada flecha son iguales al coeficiente de su posición, de forma que fórmula de la cola de una flecha multiplica por el factor que figura en la punta de la flecha (donde n se refiere al valor al que se señala). Para las flechas inferiores en dirección contraria, sus puntas indican que se multiplique por /n-2. Alternativamente, el área de la superficie Sn+1 de la esfera en n+2 dimensiones, es exactamente R veces el volumen Vn contenido por la esfera en n dimensiones

El cambio del índice n a n − 2 produce las relaciones de recurrencia siguientes:

donde S0 = 2, V1 = 2, S1 = 2π y V2 = π.

La relación de recurrencia para Vn también se puede probar a través de la integración con coordenadas polares bidimensionales:

Coordenadas esféricas

Se puede definir un sistema de coordenadas en un espacio euclidiano n-dimensional que es análogo al sistema de coordenadas esféricas definido para el espacio euclídeo tridimensional, en el que las coordenadas consisten en una coordenada radial r, y las coordenadas angulares n − 1 φ1, φ2, ... φn−1, donde los ángulos φ1, φ2, ... φn−2 se extienden sobre [0,π] radianes (o entre [0,180] grados) y φn−1 varía sobre [0,2π) radianes (o entre [0,360) grados). Si xi son las coordenadas cartesianas, entonces se puede calcular x1, ... xn a partir de r, φ1, ... φn−1 con:[5]

Excepto en los casos especiales descritos a continuación, la transformación inversa es única:

donde si xk ≠ 0 para algunos k pero todos xk+1, ... xn son cero, entonces φk = 0 cuando xk > 0 y φk = π (180 grados) cuando xk < 0.

Hay algunos casos especiales donde la transformación inversa no es única; φk para cualquier k será ambiguo siempre que todos los xk, xk+1, ... xn sean cero; en este caso, φk puede elegirse como cero.

Volumen esférico y elementos de área

Expresando las medidas angulares en radianes, el elemento volumen en el espacio euclídeo n-dimensional se encontrará a partir del Jacobiano de la transformación:

y la ecuación anterior para el volumen de la n-bola se puede recuperar integrando:

De manera similar, el elemento del área de superficie de la (n − 1)-esfera, que generaliza el elemento de área de la 2-esfera, viene dado por

La elección natural de una base ortogonal sobre las coordenadas angulares es un producto de polinomios ultraesféricos,

para j = 1, 2,... n − 2, y eisφj para el ángulo j = n − 1 en concordancia con los armónicos esféricos.

Proyección estereográfica

Al igual que una esfera bidimensional incrustada en tres dimensiones se puede representar en un plano bidimensional mediante una proyección estereográfica, una n-esfera se puede representar en un hiperplano n-dimensional mediante la versión n-dimensional de la proyección estereográfica. Por ejemplo, el punto [x,y,z] en una esfera bidimensional de radio 1 se asigna al punto [x/1 − z,y/1 − z] en el plano xy. En otras palabras,

Del mismo modo, la proyección estereográfica de una n-esfera Sn−1 de radio 1 se correlacionará con el hiperplano dimensional (n − 1) Rn−1 perpendicular al eje xn como

Generando puntos aleatorios

Uniformemente al azar en una (n − 1) esfera

Un conjunto de puntos distribuidos uniformemente en la superficie de una 2-esfera unidad generado usando el algoritmo de Marsaglia

Para generar puntos aleatorios distribuidos uniformemente en la (n − 1)-esfera unidad (es decir, la superficie de la n-bola unidad), Marsaglia (1972) proporciona el siguiente algoritmo:

Genérese un vector n-dimensional de distribución normal (es suficiente usar N(0, 1), aunque en realidad la elección de la varianza es arbitraria), x = (x1, x2,... xn). Ahora, calcúlese el radio de este punto:

El vector 1/rx se distribuye uniformemente sobre la superficie de la n-bola unidad.

Una alternativa dada por Marsaglia es seleccionar uniformemente al azar un punto x = (x1, x2,... xn) en el n-cubo unidad, muestreando cada xi independientemente de la distribución uniforme continua sobre (–1,1), calculando r como arriba, y rechazando el punto y remuestreando si r ≥ 1 (es decir, si el punto no está en la n-bola), y cuando se obtiene un punto en la bola, se escala hacia la superficie esférica por el factor 1/r; de forma que de nuevo 1/rx se distribuye uniformemente sobre la superficie de la n-bola unidad.

Uniformemente al azar dentro de una n-bola

Con un punto seleccionado al azar uniformemente desde la superficie de la (n - 1)-esfera unidad (por ejemplo, usando el algoritmo de Marsaglia), se necesita solo un radio para obtener un punto uniformente al azar desde dentro de la n-bola unidad. Si u es un número generado uniformemente al azar en el intervalo [0, 1] y x es un punto seleccionado uniformemente al azar de la (n - 1)-esfera unidad, entonces u(1n)x se distribuye uniformemente dentro de la n-bola unidad.

Alternativamente, los puntos se pueden muestrear uniformemente desde dentro de la n-bola unidad mediante una reducción desde la (n + 1)-esfera unidad. En particular, si (x1,x2,...,xn+2) es un punto seleccionado uniformemente de la (n + 1)-esfera unidad, entonces (x1,x2,...,xn) se distribuye uniformemente dentro de la n-bola unidad (es decir, simplemente descartando dos coordenadas).[6]

Si n es suficientemente grande, la mayor parte del volumen de la n-bola estará contenido en la región muy cercana de su superficie, por lo que un punto seleccionado de ese volumen probablemente también estará cerca de la superficie. Este es uno de los fenómenos que conducen a la llamada maldición de la dimensión, que surge en algunas aplicaciones numéricas.

Esferas específicas

0-esfera
El par de puntos R} con topología discreta para R > 0. Se trata de la única esfera que no es un conjunto conexo. Posee una estructura de grupo de Lie natural; isomorfo a O (1). Paralelizable
1-esfera
También conocida como circunferencia. Posee un grupo fundamental no trivial. Estructura del grupo de Lie abeliano, el grupo circular, topológicamente equivalente a la recta proyectiva real, R P1. Paralelizable. SO(2) = U(1).
2-esfera
También conocida simplemente como esfera. Estructura compleja; equivalente a la recta proyectiva compleja, C P1. SO(3)/SO(2).
3-esfera
También conocida como glomo. Paralelizable, U(1)-haz principal sobre la 2-esfera, estructura de grupo de Lie Sp(1), donde también
.
4-esfera
Equivalente a la recta proyectiva cuaterniónica, HP1. SO(5)/SO(4).
5 esferas
U(1)-haz principal sobre CP2. SO(6)/SO(5) = SU(3)/SU(2).
6 esfera
Posee una variedad casi compleja proveniente del conjunto de unidades de octonión puras. SO(7)/SO(6) = G2/SU (3). La pregunta de si posee un estructura compleja se conoce como el "problema de Hopf", en referencia a Heinz Hopf.[7]
7-esfera
Estructura topológica de cuasigrupo como el conjunto de unidades de los octoniones. Sp(1)-haz principal sobre S4. Paralelizable. SO(8)/SO(7) = SU(4)/SU(3) = Sp(2)/Sp(1) = Spin(7)/G2 = Spin(6)/SU(3). La 7-esfera es de particular interés, ya que fue en esta dimensión en la que se descubrió la primera esfera exótica.
8-esfera
Equivalente a la línea proyectiva octoniónica OP1.
23-esfera
Es posible un empaquetamiento de esferas altamente denso en un espacio de 24 dimensiones, que está relacionado con las cualidades únicas de la retícula de Leech.

Véase también

Referencias

  1. Consistencia con la definición de hiperesfera y la fórmula de distancia en En + 1
  2. Desarrollo analítico de la definición
  3. Lang, Serge: Introducción al Análisis Matemático, ISBN 0-201-62907-0, pg. 100
  4. James W. Vick (1994). Homology theory, p. 60. Springer
  5. Blumenson, L. E. (1960). «A Derivation of n-Dimensional Spherical Coordinates». The American Mathematical Monthly 67 (1): 63-66. JSTOR 2308932. doi:10.2307/2308932. 
  6. Voelker, Aaron R.; Gosmann, Jan; Stewart, Terrence C. (2017), Efficiently sampling vectors and coordinates from the n-sphere and n-ball, Centre for Theoretical Neuroscience, doi:10.13140/RG.2.2.15829.01767/1 .
  7. Agricola, Ilka; Bazzoni, Giovanni; Goertsches, Oliver; Konstantis, Panagiotis; Rollenske, Sönke (2018). «On the history of the Hopf problem». Differential Geometry and Its Applications 57: 1-9. arXiv:1708.01068. doi:10.1016/j.difgeo.2017.10.014. 

Bibliografía

Enlaces externos





La hiperesfera en el espacio euclídeo de dimensión 3, es la 2-esfera.



Ejemplos:

  • Para n=0, la hiperesfera consta de dos puntos de coordenadas R y -R.
  • Para n=1, la hiperesfera es una circunferencia.
  • Para n=2, la hiperesfera es la esfera usual.

Propiedades

N-bola

El espacio encerrado por una (n-1)-esfera es una n-bola. Una n-bola es cerrada si incluye la (n-1)-esfera y abierta en caso contrario.

Ejemplos:

  • La 1-bola es un segmento de recta, el interior de una 0-esfera.
  • La 2-bola es un disco, el interior de una circunferencia (1-esfera).
  • La 3-bola es la bola ordinaria, el interior de una esfera (2-esfera).

Véase también

Referencias