Aller au contenu

Optimisation convexe

Un article de Wikipédia, l'encyclopédie libre.
Ceci est la version actuelle de cette page, en date du 27 juin 2024 à 08:55 et modifiée en dernier par D Cat laz (discuter | contributions). L'URL présente est un lien permanent vers cette version.
(diff) ← Version précédente | Voir la version actuelle (diff) | Version suivante → (diff)
Optimisation convexe dans un espace en deux dimensions dans un espace contraint

L'optimisation convexe est une sous-discipline de l'optimisation mathématique, dans laquelle le critère à minimiser est convexe et l'ensemble admissible est convexe. Ces problèmes sont plus simples à analyser et à résoudre que les problèmes d'optimisation non convexes, bien qu'ils puissent être NP-difficile (c'est le cas de l'optimisation copositive).

La théorie permettant d'analyser ces problèmes ne requiert pas la différentiabilité des fonctions. Cette généralité est motivée par le fait que certaines méthodes de construction de problèmes d'optimisation convexe conduisent à des problèmes non différentiables (fonction marginale, dualisation de contraintes, etc). Si cette généralité est un atout, permettant de prendre en compte davantage de problèmes, l'abord de la théorie est également plus difficile.

L'optimisation convexe repose sur l'analyse convexe.

Contexte et introduction

[modifier | modifier le code]

L'optimisation convexe est un type d'optimisation mathématique, c'est-à-dire une discipline qui étudie des problèmes du type : optimiser une fonction donnée dans un espace donné. Elle généralise l'optimisation linéaire et l'optimisation semi-définie positive[1], mais aussi l'optimisation conique et l'optimisation copositive.

Définitions du problème

[modifier | modifier le code]

Formulation générale

[modifier | modifier le code]

Soit un espace vectoriel. Un problème d'optimisation convexe[1] consiste à minimiser une fonction convexe sur , ce que l'on écrit d'une des manières suivantes :

Si on note

le domaine (effectif) de , le problème est identique à celui de minimiser sur  :

Si , c'est-à-dire si , cette expression est encore valable puisque, par convention, . L'intérêt d'avoir une fonction pouvant prendre la valeur est donc d'introduire des contraintes dans le problème de minimisation (on oblige la solution du problème à être dans ).

Une solution (globale) du problème est un point tel que

Clairement, si prend la valeur , on a  ; et si n'est pas identiquement égale à , on a .

Si est un espace vectoriel topologique, est une solution locale du problème si

En réalité une solution locale est une solution globale au sens précédent.

Solutions d'un problème d'optimisation convexe — 

  1. L'ensemble des solutions d'un problème d'optimisation convexe est convexe.
  2. Si est strictement convexe, le problème d'optimisation convexe a au plus une solution.
  3. Si est un espace vectoriel topologique et si est une solution locale d'un problème d'optimisation convexe, alors est une solution globale du problème.

Contraintes fonctionnelles

[modifier | modifier le code]

Au lieu de donner la valeur infinie au critère en dehors de l'ensemble admissible, on peut spécifier explicitement les contraintes à réaliser. Le problème s'écrit par exemple comme suit

dans lequel on minimise une fonction à valeurs finies et l'inconnue doit

  • appartenir à un ensemble convexe de ,
  • vérifier une contrainte affine ( est une application linéaire entre et un autre espace vectoriel et ) et
  • vérifier un nombre fini de contraintes fonctionnelles convexes données par une fonction dont les composantes sont convexes et l'inégalité vectorielle doit se comprendre composante par composante (elle est équivalente aux contraintes d'inégalité pour ).

L'ensemble admissible de ce problème est convexe et s'écrit

Le problème est bien convexe puisqu'il s'agit de minimiser sur la fonction définie par

qui est une fonction convexe.

Conditions d'optimalité

[modifier | modifier le code]

Condition générale

[modifier | modifier le code]

La condition d'optimalité correspondant à la formulation générale du problème est la suivante. On note le sous-différentiel de en un point tel que .

Condition d'optimalité générale — Si est tel que , alors est solution du problème convexe si, et seulement si, .

Cas de contraintes fonctionnelles

[modifier | modifier le code]

On s'intéresse ici à des conditions d'optimalité pour le problème exprimé au moyen de contraintes fonctionnelles.

Notes et références

[modifier | modifier le code]
  1. a et b Stephen Boyd et Lieven Vandenberghe, Convex Optimization, Cambridge University Press, (lire en ligne).