Saltar ao contido

Mixótrofo

Na Galipedia, a Wikipedia en galego.

Un mixótrofo é un organismo que pode usar unha mestura de fontes de enerxía e carbono diferentes, en vez de ter un só modo trófico situado no continuo desde a autotrofia completa nun extremo ata a heterotrofia no outro extremo. Este tipo de nutrición denomínase mixotrofia. Estímase que os mixótrofos comprenden máis da metade do plancto microscópico.[1] Hai dous tipos de mixótrofos eucariotas: os que teñen os seus propios cloroplastos, e os que teñen endosimbiontes (e os que os adquiren por medio da cleptoplastia ou por asociacions simbióticas con presas ou a escravitude dos seus orgánulos).[2]

Posibles combinacións son a foto- e quimiotrofia, a lito- e organotrofia (osmotrofia, fagotrofia e mizocitose), a auto- e heterotrofia ou outras combinacións deles. Os mixótofos poden ser eucariotas ou procariotas.[3] Poden aproveitarse das diferentes condicións ambientais.[4]

Se un modo trófico é obrigado, entón sempre é necesario para o crecemento sostido e o mentemento; se é facultativo, pode ser usado como fonte suplementaria.[3] Algúns organismos teñen un ciclo de Calvin incompleto, así que son incapaces de fixar o dióxido de carbono e deben usar fontes de carbono orgánico.

Introdución

Os organismos poden empregar a mixotrofia de forma obrigada ou facultativa.

  • Mixotrofia obrigada. Para soportar o seu crecemento e mantemento un organismo debe utilizar medios tanto heterótrofos coma autótrofos.
  • Autotrofia obrigada con heterotrofia facultativa. A autotrofia por si soa é suficiente para o seu crecemento e mantemento, pero a heerotrofia pode usarse como estratexia suplementaria cando a enerxía autótrofa non é suficiente, por exemplo cando a intensidade da luz é baixa.
  • Autotrofia facultativa con heterotrofia obrigada. A heterotrofia é suficiente para o seu crecemento e mantemento, pero a autotrofia pode usarse como suplemento, por exemplo cando a dispoñibilidade de presas é moi baixa.
  • Mixotrofia facultativa. O mantemento e crecemento poden conseguilos normalmente usando só medios heterótrofos ou autótrofos, mentres que a mixotrofia só a usan cando é necesario.[5]

Plantas

Planta mixótrofa que usa fungos micorrízicos para obter produtos doutras plantas.

Entre as plantas a mixotrofía aplícase a plantas carnívoras, hemiparasitas e micoheterótrofas. Porén, esta caracterización como mixótrofas podería estenderse a un maior número de clados a medida que as investigcións demostran que tamén forman parte da subministración dos seus nutrientes formas orgánicas de nitróxeno e fósforo (como ADN, proteínas, aminoácidos ou carbohidratos) en varias especies de plantas.[6]

Animais

A mixotrofia é menos común en animais que en plantas e microbios, pero hai moitos exemplos de invertebrados mixótrofos e de polo menos un vertebrado.

  • Os corais construcotres de arrecifes (Scleractinia), igual que moitos outros cnidarios (por exemplo, augamares, anemones), albergan microalgas endosimbióticas dentro das súas células, o que os converte en mixótrofos.
  • A vespa Vespa orientalis pode obter enerxía da luz solar absorbida pola súa cutícula.[11] Isto contrasta co resto dos animais mencionados aquí, os cales son mixótrofos grazas á axuda dun endosimbionte.

Microorganismos

Bacterias e arqueas

A organotrofia pode darse en condicións aerobias ou anaerobias; a litoautotrofia ten lugar aerobicamente.[16][17]

Protistas

Clasificación tradicional dos protistas mixótrofos
Neste diagrama, os tipos nos cadros brancos propostos por Stoecker[18] foron aliñados con grupos en cadros grises propostos por Jones.[19][20]
DIN = nutrientes inorgánicos disoltos (dissolved inorganic nutrients)

Para clasificar os subdominios dentro da mixotrofia, suxeríronse varios esquemas de clasificación moi similares. Considerando o exemplo dos protistas mariños con capacidades heterótrofas e fostosintéticas: Na distribución postulada por Jones,[19] hai catro grupos mixótrofos baseándose nos papeis relativos da fagotrofia e fototrofia.

  • A: A heterotrofia (fagotrofia) é a norma e a fototrofia só se usa cando as concentracións de presas son limitantes.
  • B: A fototrofia é a estratexia dominante e a fagotrofia emprégase como un suplemento cando a luz é limitada.
  • C: A fototrofia orixina subbstancias para o crecemento e a inxestión, a fagotrofia emprégase cando a luz é limitante.
  • D: A fototrofia é o tipo de nutrición máis común e a fagotrofia só se usa durante períodos prolongados de escuridade, cando a luz é extremadamente limitante.

Un esquema alternativo proposto por Stoeker[18] tamén ten en conta o papel dos nutrientes e factores de crecemento e inclúe mixótrofos que teñen un simbionte fotosintético ou que reteñen os cloroplastos das súas presas. Este esquema clasifica os mixótrofos pola súa eficiencia.

  • Tipo 1: "Mixótrofos ideais" que usan as presas e a luz solar igual de ben.
  • Tipo 2: Suplementan a actividade fototrófica con consumo de alimentos.
  • Tipo 3: Primariamente heterótrofos que usan a actividade fototrófica durante os períodos de moi baixa abundancia de presas.[21]

Outro esquema, proposto por Mitra et al., clasifica especificamente os mixótrofos planctónicos mariños para que a mixotrofia se inclúa nos modelos de ecosistemas.[20] Este esquema clasifica os organismos como:

  • Mixótrofos constitutivos: organismos fagótrofos que son inherentemente capaces de realizar tamén a fotosíntese.
  • Mixótrofos non constitutivos: organismos fagótrofos que deben inxerir presas para adquirir a capacidade de fotosintetizar. Este grupo pode dividirse en:
    • Mixótrofos non consecutivos específicos, que so adquiren a capacidade de fotosintetizar dunha presa específica (sexa por reterlle só os plastidios como na cleptoplastia ou por reter a célula enteira da presa como na endosimbiose).
    • Mixótrofos non constitutivos xerais, que poden adquirir a capacidade de fotosintetizar de diversas presas posibles.
Vías utilizadas por Mitra et al. para derivar grupos funcionais de protistas planctónicos.[20]
Vías utilizadas por Mitra et al. para derivar grupos funcionais de protistas planctónicos.[20]
Niveis de complexidade entre os diferentes tipos de protistas segundo Mitra et al.[20] (A) fagótrofos (non fototrofia); (B) fotótrofos (non fagotrofia); (C) mixótrofo constitutivo, con capacidade innata para a fototrofia; (D) mixótrofos non constitutivos xenaralistas que adquiren fotosistemas de diferentes presas fotótrofas; (E) mixótrofos non constitutivos especialistas, que adquiren plastidios dun tipo de presa específico; (F) mixótrofos non constituivos especialistas que adquiren fotosistemas de endosimbiontes. DIM = materia orgánica disolta (dissolved inorganic material), como amonio, fosfato, etc. DOM = materia orgánica disolta (dissolved organic material).
Niveis de complexidade entre os diferentes tipos de protistas segundo Mitra et al.[20]
(A) fagótrofos (non fototrofia); (B) fotótrofos (non fagotrofia); (C) mixótrofo constitutivo, con capacidade innata para a fototrofia; (D) mixótrofos non constitutivos xenaralistas que adquiren fotosistemas de diferentes presas fotótrofas; (E) mixótrofos non constitutivos especialistas, que adquiren plastidios dun tipo de presa específico; (F) mixótrofos non constituivos especialistas que adquiren fotosistemas de endosimbiontes.
DIM = materia orgánica disolta (dissolved inorganic material), como amonio, fosfato, etc. DOM = materia orgánica disolta (dissolved organic material).

-->

Notas

  1. Beware the mixotrophs - they can destroy entire ecosystems 'in a matter of hours'
  2. [S. G. Leles et al, Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance, Proceedings of the Royal Society B: Biological Sciences (2017).]
  3. 3,0 3,1 Eiler A (decembro de 2006). "Evidence for the Ubiquity of Mixotrophic Bacteria in the Upper Ocean: Implications and Consequences". Appl Environ Microbiol 72 (12): 7431–7. Bibcode:2006ApEnM..72.7431E. PMC 1694265. PMID 17028233. doi:10.1128/AEM.01559-06. 
  4. Katechakis A, Stibor H (xullo de 2006). "The mixotroph Ochromonas tuberculata may invade and suppress specialist phago- and phototroph plankton communities depending on nutrient conditions". Oecologia 148 (4): 692–701. Bibcode:2006Oecol.148..692K. PMID 16568278. doi:10.1007/s00442-006-0413-4. 
  5. Schoonhoven, Erwin (19 de xaneiro de 2000). "Ecophysiology of Mixotrophs" (PDF). Thesis. 
  6. Schmidt, Susanne; John A. Raven; Chanyarat Paungfoo-Lonhienne (2013). "The mixotrophic nature of photosynthetic plants". Functional Plant Biology 40 (5): 425–438. ISSN 1445-4408. PMID 32481119. doi:10.1071/FP13061. 
  7. Petherick, Anna (2010-07-30). "A solar salamander". Nature (en inglés): news.2010.384. ISSN 0028-0836. doi:10.1038/news.2010.384. 
  8. Frazer, Jennifer (18 de maio de 2018). "Algae Living inside Salamanders Aren't Happy about the Situation". Scientific American Blog Network. 
  9. Burns, John A; Zhang, Huanjia; Hill, Elizabeth; Kim, Eunsoo; Kerney, Ryan (2 de maio de 2017). "Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis". eLife 6. PMC 5413350. PMID 28462779. doi:10.7554/eLife.22054. 
  10. Compère, Pierre (novembro de 1999). "Report of the Committee for Algae: 6". Taxon 48 (1): 135–136. JSTOR 1224630. 
  11. Plotkin, Hod, Zaban; et al. (2010). "Solar energy harvesting in the epicuticle of the oriental hornet (Vespa orientalis)". Naturwissenschaften 97 (12): 1067–1076. Bibcode:2010NW.....97.1067P. PMID 21052618. doi:10.1007/s00114-010-0728-1. 
  12. Djeghri, Nicolas; Pondaven, Philippe; Stibor, Herwig; Dawson, Michael N. (2019). "Review of the diversity, traits, and ecology of zooxanthellate jellyfishes" (PDF). Marine Biology 166 (11). doi:10.1007/s00227-019-3581-6. 
  13. Libes, Susan M. (2009). Introduction to marine biogeochemistry (2 ed.). Academic Press. p. 192. ISBN 978-0-7637-5345-0. 
  14. Dworkin, Martin (2006). The Prokaryotes: Ecophysiology and biochemistry 2 (3rd ed.). Springer. p. 988. ISBN 978-0-387-25492-0. 
  15. Lengeler, Joseph W.; Drews, Gerhart; Schlegel, Hans Günter (1999). Biology of the Prokaryotes. Georg Thieme Verlag. p. 238. ISBN 978-3-13-108411-8. 
  16. Bartosik D, Sochacka M, Baj J (xullo de 2003). "Identification and Characterization of Transposable Elements of Paracoccus pantotrophus". J Bacteriol 185 (13): 3753–63. PMC 161580. PMID 12813068. doi:10.1128/JB.185.13.3753-3763.2003. 
  17. Friedrich, Cornelius G.; et al. (2007). "Redox Control of Chemotrophic Sulfur Oxidation of Paracoccus pantotrophus". Microbial Sulfur Metabolism. Springer. pp. 139–150.  PDF
  18. 18,0 18,1 Stoecker, Diane K. (1998). "Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications". European Journal of Protistology 34 (3): 281–290. doi:10.1016/S0932-4739(98)80055-2. 
  19. 19,0 19,1 Jones, Harriet (1997). "A classification of mixotrophic protists based on their behaviour". Freshwater Biology 37: 35–43. doi:10.1046/j.1365-2427.1997.00138.x. 
  20. 20,0 20,1 20,2 20,3 Mitra, Aditee; Flynn, Kevin J.; Tillmann, Urban; Raven, John A.; Caron, David; Stoecker, Diane K.; Not, Fabrice; Hansen, Per J.; Hallegraeff, Gustaaf; Sanders, Robert; Wilken, Susanne; McManus, George; Johnson, Mathew; Pitta, Paraskevi; Våge, Selina; Berge, Terje; Calbet, Albert; Thingstad, Frede; Jeong, Hae Jin; Burkholder, Joann; Glibert, Patricia M.; Granéli, Edna; Lundgren, Veronica (2016). "Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies". Protist 167 (2): 106–120. PMID 26927496. doi:10.1016/j.protis.2016.01.003.  O material foi copiado desta fonte, que está dispoñible baixo licenza Creative Commons Attribution 4.0 International.
  21. Tarangkoon, Woraporn (29 April 2010). "Mixtrophic Protists among Marine Ciliates and Dinoflagellates: Distribution, Physiology and Ecology" (PDF). Thesis. 

Véxase tamén

Outros artigos

Ligazóns externas