ഫ്ലോട്ടിങ്ങ് പോയിന്റ്
കമ്പ്യൂട്ടിംഗിൽ, ഫ്ലോട്ടിംഗ്-പോയിന്റ് അരിത്മെറ്റിക് (FP) എന്നത് റേഞ്ചും കൃത്യതയും തമ്മിലുള്ള ഒരു ട്രേഡ്-ഓഫിനെ പിന്തുണയ്ക്കുന്നതിനുള്ള ഏകദേശ കണക്കായി യഥാർത്ഥ സംഖ്യകളുടെ ഫോർമുല പ്രാതിനിധ്യം ഉപയോഗിക്കുന്ന ഗണിതമാണ്. ഇക്കാരണത്താൽ, വേഗത്തിലുള്ള പ്രോസസ്സിംഗ് സമയം ആവശ്യമുള്ള വളരെ ചെറുതും വലുതുമായ യഥാർത്ഥ സംഖ്യകളുള്ള സിസ്റ്റങ്ങളിൽ ഫ്ലോട്ടിംഗ്-പോയിന്റ് കമ്പ്യൂട്ടേഷൻ പലപ്പോഴും ഉപയോഗിക്കുന്നു. പൊതുവേ, ഒരു ഫ്ലോട്ടിംഗ്-പോയിന്റ് സംഖ്യയെ ഏകദേശം നിശ്ചിത എണ്ണം സിഗ്നഫിക്കന്റ് ഡിജിറ്റ്സ്(the significand) ഉപയോഗിച്ച് പ്രതിനിധീകരിക്കുകയും ചില നിശ്ചിത അടിത്തറയിൽ ഒരു എക്സ്പോണന്റ് ഉപയോഗിച്ച് സ്കെയിൽ ചെയ്യുകയും ചെയ്യുന്നു; സ്കെയിലിംഗിന്റെ അടിസ്ഥാനം സാധാരണയായി രണ്ട്, പത്ത് അല്ലെങ്കിൽ പതിനാറ് ആണ്. കൃത്യമായി പ്രതിനിധീകരിക്കാൻ കഴിയുന്ന ഒരു സംഖ്യ ഇനിപ്പറയുന്ന രൂപത്തിലുള്ളതാണ്:
- പ്രാമുഖ്യസംഖ്യ × അടിസ്ഥാനസംഖ്യകൃതി
സിഗ്നിഫിക്കാൻഡ് ഒരു പൂർണ്ണസംഖ്യയാണെങ്കിൽ, അടിസ്ഥാനം രണ്ടിനേക്കാൾ വലുതോ തുല്യമോ ആയ ഒരു പൂർണ്ണസംഖ്യയാണ്, കൂടാതെ ഘാതം(exponent) ഒരു പൂർണ്ണസംഖ്യയുമാണ്. ഉദാഹരണത്തിന്:
ഫ്ലോട്ടിംഗ് പോയിന്റ് എന്ന പദം സൂചിപ്പിക്കുന്നത് ഒരു സംഖ്യയുടെ റാഡിക്സ് പോയിന്റിന് (ദശാംശ ബിന്ദു, അല്ലെങ്കിൽ, സാധാരണയായി കമ്പ്യൂട്ടറുകളിൽ, ബൈനറി പോയിന്റ്) "ഫ്ലോട്ട്" ചെയ്യാൻ കഴിയും; അതായത്, സംഖ്യയുടെ പ്രധാന അക്കങ്ങളുമായി ബന്ധപ്പെട്ട് എവിടെയും ഇത് സ്ഥാപിക്കാവുന്നതാണ്. ഈ സ്ഥാനം എക്സ്പോണന്റ് ഘടകമായി സൂചിപ്പിച്ചിരിക്കുന്നു, അതിനാൽ ഫ്ലോട്ടിംഗ് പോയിന്റ് പ്രാതിനിധ്യം ഒരു തരം സയന്റഫിക് നൊട്ടേഷനായി കണക്കാക്കാം.