Yakub bin Tarık
Yakub bin Tarık | |
---|---|
Doğum | 8. yy Bağdat |
Ölüm | MS 769 Bağdat |
Milliyet | Pers |
Diğer ad(lar)ı | İngilizce: Yaʿqūb ibn Ṭāriq, Arapça: يعقوب بن طارق |
Vatandaşlık | Abbasi Halifeliği |
Kariyeri | |
Dalı | Matematik, Astronomi, Astroloji |
Yakub bin Tarık (İngilizce: Yaʿqūb ibn Ṭāriq, Arapça: يعقوب بن طارق, MS 796'da öldü) 8. yüzyılda Bağdat'ta yaşamış İranlı (Pers) astronom ve matematikçi.[1]
Çalışmaları
Yakub bin Tarık, Arap astronomisinin temel yapısını Yunan, Hint ve İran kaynaklarından geliştiren Bağdat'taki 8. yüzyıl bilim adamlarının (özellikle Fazāri[2]) çağdaşı ve çalışma arkadaşı olarak bilinir.
Yakub bin Tarık'a atfedilen eserler şunlardır:[3]
- Zīj maḥlūl fī al‐Sindhind li‐daraja daraja (Arapça: زيج محلول في السندهند لدرجة درجة, Sindhinddeki her derece için çözümlenmiş astronomik tablolar"),
- Tarkīb al‐aflāk (Arapça: تركیب الأفلاك, "Gök cisimlerinin sıralanması"),
- Kitāb al‐ʿilal (Arapça: كتاب العلل, "Rationales"),
- Taqṭīʿ kardajāt al‐jayb (Arapça: تقطيع كردجات الجيب, "Sinüsün kardajasının dağılımı") ve
- Mā irtafaʿa min qaws niṣf al‐nahār (Arapça: ما إرتفع من قوس نصف النهار, "Meridyen yayı boyunca yükselme").
Al‐maqālāt (Arapça: المقالات, "Bölümler") adlı astrolojik bir çalışma da güvenilmez bir kaynak tarafından kendisine atfedilir.[3]
Yukarıdaki eserlerin hiçbiri şu anda mevcut değildir ve sadece ilk üçü daha sonraki yazılardan ayrıntılı olarak bilinmektedir.
770 civarında yazılan Zīj, Brāhmasphuṭasiddhānta ile benzer olduğu düşünülen Sanskritçe bir esere[3] dayanıyordu.[4] Bu çalışma Sind'den[4] el-Mansur sarayına, bildirildiğine göre Kankah adlı bir Sindi astronomu tarafından getirildi.[5]
Yakub bin Tarık'ın zīc'i (astronomik tablolar içeren el kitabı), Fazārī'ninki gibi, görünüşe göre Zīj al-Sindhindin Sanskritçe orijinaline dayanıyordu ve 770'lerde Bağdat'ta tercüme edildi. (Yakub'un bu tercümeye katılımının oldukça işlenmiş bir 12. yüzyılda anlatımı İbraham bin ʿEzra tarafından verilmiştir.) Ayrıca Fazārī'ninki gibi Yakub'un zīc'inin hayatta kalan parçaları farklı geleneklerden heterojen bir karışımdır. Örneğin, ay hilalinin görünürlüğünün kuralı olduğu gibi, ortalama hareket parametreleri Hindistan'dır; takvim Farsçadır; ve medeni gün için Hindistan'ın gün doğumu dönemi, ana meridyeni Arin'in (Ujjain) olağan konumundan doğuya 90° (veya 1/4 gün) hareket ettirmenin basit bir yolu ile Yunan esintili öğle dönemine dönüştürülmüş gibi görünmektedir.
Tarkīb al‐aflāk kozmografi, yani gök cisimlerinin yerleşimi ve boyutları ile ilgiliydi.[3] Gök cisimlerinin boyutları ve mesafelerine ilişkin tahminleri el-Birûni'nin Hindistan üzerine çalışması; ona göre Yakub bin Tarık, Dünya'nın yarıçapını 1.050 fersah, Ay ve Merkür'ün çapını 5.000 fersah (4.8 Dünya yarıçapı) ve diğer gök cisimlerinin (Venüs, Güneş, Mars, Jüpiter ve Satürn) çapını 20.000 "fersah" olarak (19.0 Dünya yarıçapı) verdi.[6] Ayrıca Sanskrit incelemelerindeki tekniklere göre birikmiş zamanı belirleme kurallarını belirtti. 11. yüzyılda Bīrūnī, Hint kozmografik geleneğini kullanan tek Arapça kaynak olarak Tarkīb'dan bahsetmiştir (aynı değerlerin en azından bir kısmı diğer ziclerden bilinmesine rağmen); Yakub'un bazı kurallarının açıklamaları doğruysa, Hint usullerini her zaman tam olarak anlamadı ya da doğru yorumlamadı.
Zicdeki hesaplama kurallarının matematiksel açıklamalarını sağlamayı üstlenen “gerekçeler” veya “nedenler” incelemelerinin türünün erken bir temsilcisi olan Kitāb al-ʿilal hakkındaki bilgimizi de Bīrūnī'den alıyoruz. Bīrūnī'nin bu çalışmaya yaptığı tüm atıflar, al‐Ẓilāl ("Gölgeler üzerine", "On shadows") eserinde yer almaktadır, bu nedenle, zaman ve yer hesaplamalarında gnomon gölgelerini kullanan trigonometrik prosedürlerle sınırlıdır. Bu zamana kadar, açıkça, Yakub'un eserleri, esasen Hint geleneğinin erken etkileri hakkında sağladıkları bilgiler için değerlendi, bunların çoğu daha sonraki İslam astronomisinde ağırlıklı olarak Ptolemaik tekniklerle değiştirildi.
Notlar
- ^ "YAʿQūB IBN ṬāRIQ". 17 Ekim 2012 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Ocak 2021.
- ^ "FEZÂRÎ, Muhammed b. İbrâhim". Türkiye Diyanet Vakfı İslâm Ansiklopedisi. 13 Kasım 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Ocak 2021.
- ^ a b c d Plofker
- ^ a b Pingree, p. 97
- ^ Kennedy 1956, p. 134, 71
- ^ Pingree, pp. 105–106
Konuyla ilgili yayınlar
- Hogendijk, Jan P. (1988). "New Light on the Lunar Crescent Visibility Table of Yaʿqūb ibn Ṭāriq". Journal of Near Eastern Studies. 47 (2): 95-104. doi:10.1086/373260. JSTOR 544381.
- Kennedy, E. S. (1956). "A Survey of Islamic Astronomical Tables". Transactions of the American Philosophical Society. New Series. 46 (2): 123-177. doi:10.2307/1005726. hdl:2027/mdp.39076006359272. JSTOR 1005726.
- Kennedy, E. S. (Nisan 1968). "The Lunar Visibility Theory of Yaʿqūb Ibn Ṭāriq". Journal of Near Eastern Studies. The University of Chicago Press. 27 (2): 126-132. doi:10.1086/371945. JSTOR 543759.
- Pingree, David (1968). "The Fragments of the Works of Yaʿqūb Ibn Ṭāriq". Journal of Near Eastern Studies. 27 (2): 97-125. doi:10.1086/371944. JSTOR 543758.
- Pingree, David (1976). "Yaʿqūb ibn Ṭāriq". Gillispie, Charles Coulston (Ed.). Dictionary of Scientific Biography. 14. New York: Charles Scribner's Sons. s. 546. ISBN 978-0-684-16962-0.
- Plofker, Kim (2007). "Yaʿqūb ibn Ṭāriq". Thomas Hockey (Ed.). The Biographical Encyclopedia of Astronomers. New York: Springer. ss. 1250-1. doi:10.1007/978-0-387-30400-7_1512. ISBN 978-0-387-31022-0. (PDF version 21 Eylül 2020 tarihinde Wayback Machine sitesinde arşivlendi.)
- Sezgin, Fuat (1978). Geschichte des arabischen Schrifttums. Vol. 6, Astronomie, pp. 124–127. Leiden: E. J. Brill.
- Steinschneider, Moritz (1870). "Zur Geschichte der Uebersetzungen aus dem Indischen in's Arabische und ihres Einflusses aus die arabische Literatur". Zeitschrift der Deutschen Morgenländischen Gesellschaft. 24: 332. 19 Ekim 2020 tarihinde kaynağından arşivlendi. Erişim tarihi: 20 Ocak 2021.
- Suter, Heinrich (1900). Die Mathematiker und Astronomer der Araber. s. 4.
Ayrıca bakınız
Dış bağlantılar
"YA'KŪB b. TÂRIK". Türkiye Diyanet Vakfı İslâm Ansiklopedisi. 23 Ocak 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 21 Ocak 2021.