Jump to content

Electronic filter

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Light current (talk | contribs) at 22:25, 26 August 2005 (resistors not used in passive filters). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Electronic filters are electronic circuits which perform signal processing functions. Electronic filters can be:

The most common types of electronic filters are linear filters, regardless of other aspects of their design. See the article on linear filters for details on their design and analysis. Most filters are a type of resonant system.

History

The oldest forms of electronic filters are passive analog linear filters, constructed using only capacitors and inductors.

Hybrid filters have also been made, typically involving combinations of analog amplifiers with mechanical resonators or delay lines. Other devices such as CCD delay lines have also been used as discrete-time filters.

With the availability of digital signal processing, active digital filters have become common.

Classification by technology

Passive filters

The simplest electronic implementations of linear filters are based on combinations of resistors, inductors and capacitors. Since resistance has the symbol R, inductance the symbol L and capacitance the symbol C, these filters exist in so-called RC, RL, LC and RLC varieties. All these types are collectively known as passive filters, because they are activated by the power in the signal and not by an external power supply.

Here's how passive filters work: inductors block high-frequency signals and conduct low-frequency signals, while capacitors do the reverse. A filter in which the signal passes through an inductor, or in which a capacitor provides a path to earth, therefore transmits low-frequency signals more strongly than high-frequency signals and is a low-pass filter. If the signal passes through a capacitor, or has a path to ground through an inductor, then the filter transmits high-frequency signals more strongly than low-frequency signals and is a high-pass filter. Resistors on their own have no frequency-selective properties, but are added to inductors and capacitors to determine the time-constants of the circuit, and therefore the frequencies to which it responds.

At very high frequencies (above about 100 megahertz), sometimes the inductors consist of single loops or strips of sheet metal, and the capacitors consist of adjacent strips of metal. These are called stubs. Other components can be added to LC filters to make them more precise.

Filters are measured by their quality or "Q" factor. A filter is said to have a high Q if it selects or rejects a narrow range of frequencies compared with its centre frequency.

Active filters

Active filters are implemented using a combination of passive and active (amplifying) components. Operational amplifiers are frequently used in active filter designs. These can have high Q, and achieve resonance without the use of inductors. However, their upper frequency limit is limited by the bandwidth of the amplifiers used.

Digital filters

File:FIR.png
A finite impulse response filter

Digital signal processing allows the inexpensive construction of a wide variety of filters. The signal is sampled and an analog to digital converter turns the signal into a stream of numbers. A computer program running on a CPU or a specialized DSP, less often a hardware implementation of the algorithm, calculates an output number stream. This output is converted to a signal by passing it through a digital to analog converter. There are problems with noise introduced by the conversions, but these can be controlled and limited for many useful filters. Due to the sampling involved, the input signal must be of limited frequency content or aliasing will occur. See also: Digital filter.

Other filter technologies

Quartz filters and piezoelectrics

In the late 1930s, engineers realized that small mechanical systems made of rigid materials such as quartz would acoustically resonate at radio frequencies, i.e. from audible frequencies (sound) up to several hundred megahertz.

Some early resonators were made of steel, but quartz quickly became favored. The biggest advantage of quartz is that it is piezoelectric. This means that quartz resonators can directly convert their own mechanical motion into electrical signals. Quartz also has a very low coefficient of thermal expansion. This means that quartz resonators produce stable frequencies over a wide temperature range.

Quartz crystal filters have much higher quality factors than LCR filters. When higher stabilities are required, the crystals and their driving circuits may be mounted in a "crystal oven" to control the temperature. For very narrow filters, sometimes several crystals are operated in series.

Engineers realized that a large number of crystals could be collapsed into a single component, by mounting comb-shaped evaporations of metal on a quartz crystal. In this scheme, a "tapped delay line" reinforces the desired frequencies as the sound waves flow across the surface of the quartz crystal. The tapped delay line has become a general scheme of making high-Q filters in many different ways.

SAW filters

SAW (Surface Acoustic Wave) filters are electromechanical devices commonly used in radio frequency applications. Electrical signals are converted to a mechanical wave in a piezoelectric crystal; this wave is delayed as it propagates across the crystal, before being converted back to an electrical signal by further electrodes. The delayed outputs are recombined to produce a direct analog implementation of a finite impulse response filter. This hybrid filtering technique is also found in an analog sampled filter.

Garnet filters

Another method of filtering, at frequencies from 800MHz to about 5GHz, is to use a synthetic single-crystal garnet sphere made of a chemical combination of titanium, iron and nitrogen. The garnet sits on a strip of metal driven by a transistor, and a small loop antenna touches the top of the sphere. An electromagnet changes the frequency that the garnet will pass. The advantage of this method is that the garnet can be tuned over a very wide frequency by varying the strength of the magnetic field.

Atomic filters

For even higher frequencies and greater precision, the vibrations of atoms must be used. Atomic clocks use caesium masers as ultra-high Q filters to stabilize their primary oscillators. Another method, used at high, fixed frequencies with very weak radio signals, is to use a ruby maser tapped delay line.

See also

  • . ISBN 0-07-070441-4. {{cite book}}: Missing or empty |title= (help); Unknown parameter |Author= ignored (|author= suggested) (help); Unknown parameter |Publisher= ignored (|publisher= suggested) (help); Unknown parameter |Title= ignored (|title= suggested) (help); Unknown parameter |Year= ignored (|year= suggested) (help) The Bible for practical electronic filter design.
  • National Semiconductor AN-779 application note describing analog filter theory