Evolution
In biology, evolution is the process by which populations of organisms acquire and pass on novel traits from generation to generation. One of the first theories of biological evolution was proposed in the early 19th century by Jean-Baptiste Lamarck, although his fundamentally flawed idea was that individual organisms acquire traits during their lifetimes that they pass on to offspring. With the publication of Charles Darwin and Alfred Russel Wallace's joint paper in 1858 – followed by Darwin's book Origin of Species in 1859 – the theory of evolution by natural selection became firmly established within the scientific community. In the 1930s work by a number of scientists combined Darwinian natural selection with the re-discovered theory of heredity (proposed by Gregor Mendel) to create the modern evolutionary synthesis. In the modern synthesis, "evolution" means a change in the frequency of an allele within a gene pool from one generation to the next. This change may be caused by a number of different mechanisms: natural selection, genetic drift or changes in population structure (gene flow).
this is the most stupid theory of all time and darwin is a mother fucker pimp
Evolutionary biology
Evolutionary biology is a subfield of biology concerned with the origin and descent of species, as well as their change over time. Evolutionary biology is a kind of meta field because it includes scientists from many traditional taxonomically oriented disciplines. For example, it generally includes scientists who may have a specialist training in particular organisms such as mammalogy, ornithology, or herpetology but use those organisms as systems to answer general questions in evolution.
Evolutionary biology as an academic discipline in its own right emerged as a result of the modern evolutionary synthesis in the 1930s and 1940s. It was not until the 1970s and 1980s, however, that a significant number of universities had departments that specifically included the term evolutionary biology in their titles.
Evolutionary developmental biology
Evolutionary developmental biology is an emergent subfield of evolutionary biology that looks at genes of related and unrelated organisms. By comparing the explicit nucleotide sequences of DNA/RNA, it is possible to experimentally determine and trace timelines of species development. For example, gene sequences support the conclusion that chimpanzees are the closest primate ancestor to humans, and that arthropods (e.g., insects) and vertebrates (e.g., humans) have a common biological ancestor.
History of evolutionary thought
The idea of biological evolution has existed since ancient times, notably among Hellenists such as Epicurus, but the modern theory was not established until the 18th and 19th centuries, by scientists such as Jean-Baptiste Lamarck and Charles Darwin. While transmutation of species was accepted by a sizeable number of scientists before 1859, it was the publication of Charles Darwin's The Origin of Species which provided the first cogent mechanism by which evolutionary change could occur: his theory of natural selection. Darwin was motivated to publish his work on evolution after receiving a letter from Alfred Russel Wallace, in which Wallace revealed his own discovery of natural selection. As such, Wallace is sometimes given shared credit for the theory of evolution.
Darwin's theory, though it succeeded in profoundly shaking scientific opinion regarding the development of life, could not explain the source of variation in traits within a species, and Darwin's proposal of a hereditary mechanism (pangenesis) was not compelling to most biologists. It was not until the late 19th and early 20th centuries that these mechanisms were established.
When Gregor Mendel's work regarding the nature of inheritance in the late 19th century was "rediscovered" in 1900, it led to a storm of conflict between Mendelians (Charles Benedict Davenport) and biometricians (Walter Frank Raphael Weldon and Karl Pearson), who insisted that the great majority of traits important to evolution must show continuous variation that was not explainable by Mendelian analysis. Eventually, the two models were reconciled and merged, primarily through the work of the biologist and statistician R.A. Fisher. This combined approach, applying a rigorous statistical model to Mendel's theories of inheritance via genes, became known in the 1930s and 1940s as the modern evolutionary synthesis.
In the 1940s, following up on Griffith's experiment, Avery, McCleod and McCarty definitively identified deoxyribonucleic acid (DNA) as the "transforming principle" responsible for transmitting genetic information. In 1953, Francis Crick and James Watson published their famous paper on the structure of DNA, based on the research of Rosalind Franklin and Maurice Wilkins. These developments ignited the era of molecular biology and transformed the understanding of evolution into a molecular process: the mutation of segments of DNA (see molecular evolution).
George C. Williams' 1966 Adaptation and natural selection: A Critique of some Current Evolutionary Thought marked a departure from the idea of group selection towards the modern notion of the gene as the unit of selection.
In the mid-1970s, Motoo Kimura formulated the neutral theory of molecular evolution, firmly establishing the importance of genetic drift as a major mechanism of evolution.
Debates have continued within the field. One of the most prominent public debates was over the theory of punctuated equilibrium, proposed in 1972 by paleontologists Niles Eldredge and Stephen Jay Gould to explain the paucity of transitional forms between phyla in the fossil record.
References
- Darwin, Charles November 24 1859. On the Origin of Species by means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life. London: John Murray, Albemarle Street. 502 pages. Reprinted: Gramercy (May 22, 1995). ISBN 0517123207
- Zimmer, Carl. Evolution: The Triumph of an Idea. Perennial (October 1, 2002). ISBN 0060958502
- Larson, Edward J. Evolution: The Remarkable History of a Scientific Theory (Modern Library Chronicles). Modern Library (May 4, 2004). ISBN 0679642889
- Mayr, Ernst. What Evolution Is. Basic Books (October, 2002). ISBN 0465044263
- Gigerenzer, Gerd, et al., The empire of chance: how probability changed science and everyday life (New York: Cambridge University Press, 1989).
- Williams, G.C. (1966). Adaptation and Natural Selection: A Critique of some Current Evolutionary Thought. Princeton, N.J.: Princeton University Press.
- Sean B. Carroll, 2005, Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom, W. W. Norton & Company. ISBN 0393060160
See also
Social implications of the theory of evolution
Creation-evolution controversy
External links
- Talk.Origins Archive — see also talk.origins
- National Academies Evolution Resources
- EvoWiki — A wiki whose goal is to promote general evolution education, and provide mainstream scientific responses to the arguments of antievolutionists.
- Evolution by Natural Selection — An introduction to the logic of the theory of evolution by natural selection
- Evolution — Provided by PBS.
- International Journal of Organic Evolution
- Howstuffworks.com — How Evolution Works
- Charles Darwin's writings
- Evolution News from Genome News Network (GNN)
- National Academy Press: Teaching About Evolution and the Nature of Science
- Evolution for beginners