Jump to content

Spherical geometry

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 66.69.54.217 (talk) at 16:56, 26 October 2008 (See also). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

On a sphere, the sum of the angles of a triangle is not equal to 180°. A sphere is not a Euclidean space, but locally the laws of the Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is very nearly 180°. The surface of a sphere can be represented by a collection of two dimensional maps. Therefore it is a two dimensional manifold.

Spherical geometry is the geometry of the two-dimensional surface of a sphere. It is an example of a non-Euclidean geometry. Two practical applications of the principles of spherical geometry are navigation and astronomy.

In plane geometry the basic concepts are points and line. On the sphere, points are defined in the usual sense. The equivalents of lines are not defined in the usual sense of "straight line" but in the sense of "the shortest paths between points" which is called a geodesic. On the sphere the geodesics are the great circles, so the other geometric concepts are defined like in plane geometry but with lines replaced by great circles. Thus, in spherical geometry angles are defined between great circles, resulting in a spherical trigonometry that differs from ordinary trigonometry in many respects (for example, the sum of the interior angles of a triangle exceeds 180 degrees).

Spherical geometry is the simplest model of elliptic geometry, in which a line has no parallels through a given point. Contrast this with hyperbolic geometry, in which a line has two parallels, and an infinite number of ultra-parallels, through a given point.

An important related geometry related to that modeled by the sphere is called the real projective plane; it is obtained by identifying antipodes (pairs of opposite points) on the sphere. Locally, the projective plane has all the properties of spherical geometry, but it has different global properties. In particular, it is non-orientable.

See also

References

  • Spherical Geometry UNCC
  • The Geometry of the Sphere Rice University
  • Weisstein, Eric W. "Spherical Geometry". MathWorld.