Jump to content

Saturn

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Poor Yorick (talk | contribs) at 00:02, 7 April 2003 (typo again). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.


Saturn
Orbital characteristics
Mean radius1.4294×109 km
Eccentricity0.0560
Revolution period29y 167d 6.7h
Synodic period378.1 days
Avg. Orbital Speed9.46 km/s
Inclination2.488°
Number of satellites30
Physical characteristics
Equatorial diameter120,536 km
Surface area4.38×1010 km2
Mass5.688×1026kg
Mean density0.69 g/cm3
Surface gravity9.05 m/s2
Rotation period
equatorial
10h 13m 59s
Rotation period
internal
10h 39m 25s
Axial tilt25.33°
Albedo0.47
Escape Speed35.5 km/s
Avg. Cloudtop temp.93K
Surface temp.
minmeanmax
82K143KN/A K
Atmospheric characteristics
Atmospheric pressure140 kPa
Hydrogen>93%
Helium>5%
Methane0.2%
Water vapor0.1%
Ammonia0.01%
Ethane0.0005%
Phosphine0.0001%

Saturn is the sixth planet from the Sun. It is a gas giant, the second-largest planet in the solar system after Jupiter.

This true color picture was assembled from Voyager 2 Saturn images obtained Aug. 4 from a distance of 21 million kilometers (13 million miles) on the spacecraft's approach trajectory. Three of Saturn's icy moons are evident at left. They are, in order of distance from the planet: Tethys, 1,050 km. (652 mi.) in diameter; Dione, 1,120 km. (696 mi.); and Rhea, 1,530 km. (951 mi.). The shadow of Tethys appears on Saturn's southern hemisphere. A fourth satellite, Mimas, is less evident, appearing as a bright spot a quarter-inch in in from the planet's limb about half an inch above Tethys; the shadow of Mimas appears on the planet about three-quarters of an inch directly above that of Tethys. The pastel and yellow hues on the planet reveal many contrasting bright and darker bands in both hemispheres of Saturn's weather system. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

Physical characteristics

The exploration of Saturn

Saturn's rings

Saturn is probably best known for its famous planetary rings. They were first observed by Galileo Galilei in 1610 with his telescope, but he clearly did not know what to make of it. He wrote to the Grand Duke of Tuscany that "Saturn is not alone but is composed of three, which almost touch one another and never move nor change with respect to one another. They are arranged in a line parallel to the zodiac, and the middle one (Saturn itself) is about three times the size of the lateral ones (actually the edges of the rings)." He also described Saturn has having "ears." In 1612 the plane of the rings was oriented directly at the Earth and the rings appeared to vanish, and then in 1613 they reappeared again, further confusing Galileo. The riddle of the rings was not solved until 1655 by Christiaan Huygens, using a telescope much more powerful than the ones available to Galileo in his time. In 1675 Giovanni Cassini determined that Saturn's ring was actually composed of multiple smaller rings with gaps between them; the largest of these gaps was later named the Cassini Division. The rings can be seen in quite modest modern telescopes or a good pair of binoculars. They are composed of silica rock, iron oxide, and ice particles ranging in size from specks of dust to the size of a small automobile. There are two main theories regarding the origin of Saturn's rings. One theory, originally proposed by Edward Roche in the 19th century, is that the rings were once a moon of Saturn whose orbit decayed until it came close enough to be ripped apart by tidal forces. A variation of this theory is that the moon disintegrated after being struck by a large comet or asteroid. The second theory is that the rings were never part of a moon, but are instead left over from the original nebular material that Saturn formed out of. This theory is not widely accepted today, since Saturn's rings are thought to be unstable over periods of millions of years and therefore of relatively recent origin.

Saturn's moons

Saturn has a large number of moons, 18 of which have names. The exact number of moons is uncertain, there being large numbers of objects of all sizes in orbit around Saturn. A recent survey starting in late 2000 found another 12 moons in orbits suggesting that they were the fragments of larger bodies captured by Saturn (Nature vol. 412, p.163-166)


Saturn's natural satellites
Name Diameter (km) Mass (kg) Mean orbital
radius (km)
Orbital period  
Pan 20 Unknown 133,583 0.575 days
Atlas 30 (40 x 20) Unknown 137,670 0.6019 days
Prometheus 91 (145 x 85 x 62) 2.70×1017 139,350 0.6130 days
Pandora 84 (114 x 84 x 62) 2.20×1017 141,700 0.6285 days
Epimetheus 115 (144 x 108 x 98) 5.60×1017 151,422 0.6942 days Co-orbital
Janus 178 (196 x 192 x 150) 2.01×1018 151,472 0.6945 days
Mimas 392 3.80×1019 185,520 0.942422 days  
Enceladus 498 7.30×1019 238,020 1.370218 days
Tethys 1060 6.22×1020 294,660 1.887802 days Co-orbital
Telesto 29 (34 x 28 x 36) Unknown 294,660 1.887802 days
Calypso 26 (34 x 22 x 22) Unknown 294,660 1.887802 days
Dione 1120 1.05×1021 377,400 2.736915 days Co-orbital
Helene 33 (36 x 32 x 30) Unknown 377,400 2.736915 days
Rhea 1530 2.49×1021 527,040 4.5175 days  
Titan 5150 1.35×1023 1,221,830 15.94542 days
Hyperion 286 (410 x 260 x 220) 1.77×1019 1,481,100 21.27661 days
Iapetus 1460 1.88×1021 3,561,300 79.33018 days
Phoebe 220 4.00×1018 12,952,000 550.48 days

Front Row Seats

Saturn and its rings are best seen when the planet is at or near opposition (the configuration of a planet when it is a an elongation of 180° and thus appears opposite the Sun in the sky.)

Saturn's Opposition Periods 2001-2005
Date of Opposition Distance to Earth (AU) Angular diameter  
December 3, 2001 8.08 20.6 arcsec
December 17, 2002 8.05 20.7 arcsec
December 31, 2003 8.05 20.7 arcsec
January 13, 2005 8.08 20.6 arcsec



Solar system:
Sun - Mercury - Venus - Earth - Mars - Asteroids - Jupiter - Saturn - Uranus - Neptune - Pluto - Comets