Jump to content

Automorphic number

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Dbenbenn (talk | contribs) at 03:34, 2 January 2005. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

In mathematics an automorphic number is a number whose square "ends" in the number itself. For example, 52 = 25, 762 = 5776, and 8906252 = 793212890625.

The automorphic numbers begin 1, 5, 6, 25, 76, 376, 625, 9376, ... (sequence A003226 in the OEIS)

Given a k-digit automorphic number , an at-most 2k-digit automorphic number can be found by the formula .

There are at most two automorphic numbers with k digits, one ending in 5 and one ending in 6 (unless , when there are three). One of them has the form and the other has the form . The sum of the two is 10k + 1.

The following sequence allows one to find a k-digit automorphic number, where .

12781254001336900860348890843640238757659368219796\ 26181917833520492704199324875237825867148278905344\ 89744014261231703569954841949944461060814620725403\ 65599982715883560350493277955407419618492809520937\ 53026852390937562839148571612367351970609224242398\ 77700757495578727155976741345899753769551586271888\ 79415163075696688163521550488982717043785080284340\ 84412644126821848514157729916034497017892335796684\ 99144738956600193254582767800061832985442623282725\ 75561107331606970158649842222912554857298793371478\ 66323172405515756102352543994999345608083801190741\ 53006005605574481870969278509977591805007541642852\ 77081620113502468060581632761716767652609375280568\ 44214486193960499834472806721906670417240094234466\ 19781242669078753594461669850806463613716638404902\ 92193418819095816595244778618461409128782984384317\ 03248173428886572737663146519104988029447960814673\ 76050395719689371467180137561905546299681476426390\ 39530073191081698029385098900621665095808638110005\ 57423423230896109004106619977392256259918212890625

Just take the last k digits. Remember that the backslash means that the number continues in the next line. The other automorphic number is found by subtracting the number from 10^k + 1.

Tables of automorphic numbers

nn2
525
25625
625390625
906258212890625
890625793212890625
28906258355712890625
12890625166168212890625
21289062545322418212890625
821289062567451572418212890625
18212890625331709384918212890625
918212890625843114912509918212890625
991821289062598370946943759918212890625
599182128906253590192236006259918212890625
25991821289062567557477392256259918212890625
625991821289062539186576032079756259918212890625
562599182128906253165178397321142256259918212890625
256259918212890625 65669145682477392256259918212890625
2256259918212890625 5090708818534039892256259918212890625
92256259918212890625 8511217494096854352392256259918212890625
392256259918212890625 153864973445024588727392256259918212890625
7392256259918212890625 54645452612300005057477392256259918212890625
77392256259918212890625 5989561329000849809744977392256259918212890625
977392256259918212890625 955295622596853633012869977392256259918212890625
9977392256259918212890625 99548356235275381465044119977392256259918212890625
19977392256259918212890625 399096201360473745722856619977392256259918212890625
619977392256259918212890625 384371966908872375601191606619977392256259918212890625
6619977392256259918212890625 43824100673983991394155879106619977392256259918212890625
106619977392256259918212890625 11367819579125235975036734004106619977392256259918212890625
4106619977392256259918212890625 16864327638717175315320739859004106619977392256259918212890625
9004106619977392256259918212890625 81073936023920699329853843152771109004106619977392256259918212890625
nn2
636
765776
376141376
937687909376
10937611963109376
710937650543227109376
871093767588043387109376
787109376619541169787109376
17871093763193759921787109376
817871093766689131260081787109376
400817871093761606549657881340081787109376
740081787109376547721051611007740081787109376
3740081787109376 13988211774267263740081787109376
43740081787109376 1913194754743017343740081787109376
743740081787109376 553149309256696143743740081787109376
7743740081787109376 59965510454276227407743740081787109376
607743740081787109376 369352453608598807478607743740081787109376
2607743740081787109376 6800327413935747244982607743740081787109376
22607743740081787109376 511110077017207231620022607743740081787109376
80022607743740081787109376 6403617750108490103144731780022607743740081787109376
380022607743740081787109376 144417182396352539175410357380022607743740081787109376
3380022607743740081787109376 11424552828858793029898066613380022607743740081787109376
893380022607743740081787109376 798127864794612716138610952755893380022607743740081787109376
5893380022607743740081787109376 34731928090872050116956482046515893380022607743740081787109376
995893380022607743740081787109376 991803624372854204655478894958610995893380022607743740081787109376