Jump to content

Talk:Burkhard Heim/Archive 1

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Pjacobi (talk | contribs) at 21:31, 29 December 2004 (Discussion over the value of Heim's paper and books: ISBN linkfixes). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Concerns about image in article

The Heim image was removed "due to a lack of a free license". I contacted Illobrand Von Ludwiger, who said we could use image on p. 51 of the 1st Telepolis print edition, as he took it himslef at Spitzingsee in 1985 and already gave permission for it to be reproduced in Telepolis. I will thus try to embed this image - that's afirst for me in Wikipedia, so I hope it's not too messy.--hughey 08:14, 15 Dec 2004 (UTC)

POV Concerns about initial article

At the very least, this article appears to be strongly biased toward one POV: at this point, a claim that someone had succeeded in devising a unified field theory that correctly predicts particle masses would be extraodinarily controversial. (Wikipedia is not a place to debate the merits of scientific theories, but having looked briefly at the external site mentioned in the article, I can confidently say that most physicists would be skeptical of a theory that claimed to predict the masses of protons and neutrons without any apparent attention to the nuclear forces or more than token attention to quarks, to name one of my many concerns.) Given that, some substantial cleanup to make it balanced is clearly needed.

However, I am curious to know the size of the community working on Heim's ideas. The article says that it is "small", and I can certainly attest that I had never heard of him before, nor heard of his particle mass predictions. That makes me suspect that this article falls under the "No original research" policy here on Wikipedia (the article is as much about the theory as its author, and Heim clearly wouldn't belong here if his work didn't). Namely (from that page):

  • If a viewpoint is held by an extremely small (or vastly limited) minority, it doesn't belong in Wikipedia (except perhaps in some ancilliary article), regardless if it's true or not, whether you can prove it or not.

I have no idea how commonly followed these ideas are in Germany, but I see no evidence that they have gotten significant attention in the English-speaking world. If that attention increases and these ideas take the world by storm, great! But until that point, I don't think they belong on Wikipedia. (I'll wait a while for comment before doing anything drastic about it, though.)--Steuard 19:46, Nov 11, 2004 (UTC)

"Burkhard Heim" generates 15,000 google hits, he's obviously notable enough to be included here. It does have a lot of his theories stuck in the article, but I strongly maintain that you can't really seperate a scientist from his theories, it's pretty much their lifeblood. The only big problem I really see with the article is the POV, which I somewhat tried to get rid of in my cleanup. I think that article just needs more cleanup than anything. - Lifefeed 20:04, Nov 11, 2004 (UTC)
Interesting. I must admit that I hadn't done a Google search, though I'm hesitant to set up Google as the arbiter of broad relevance (heck, searching for me gets 4,650 Google hits, and I'm pretty sure that I don't deserve an article here). Also, I note that if you limit the Google search for Heim to results in English, his hit count drops to just 211; I have no idea what the general policy is on such things, but might that make him a better candidate for the German edition of Wikipedia at this point? At any rate, as I indicated above, my main reason for suggesting that he might not be notable enough was my own moderate expertise in this field: folks in the high energy physics community simply don't talk about him, as far as I am aware. But if he has a reasonably broad following among non-experts, I agree that he probably does belong here; the article should be written to emphasize that perspective. (It should also by no means say that he discovered the theory of everything, or even a theory of everything: that would be a strong claim, and those 15,000 Google hits only say that he's known, not that he's right.)--Steuard 19:18, Nov 12, 2004 (UTC)
Also, there are some aspects of the theory that raise suspicions in kookery, like claims that it can mean something towards the explanation of the nature of consciousness. Mikkalai 20:40, 12 Nov 2004 (UTC)
Be careful, though: Wikipedia inclusion decisions are not made on the basis of whether someone is a crackpot or not (that would inevitably lead to accusations of censorship) but rather on the basis of overall notability. From the naive Google counts ("naive" because I've made no attempt to figure out if "Burkhard Heim" is a common name, for example), Heim is reasonably notable among German speakers (and essentially unknown among English speakers). Assuming that those naive results are right, he probably deserves to be mentioned here, but I do think that if he's generally considered to be a crackpot the article should make that abundantly clear. (Unfortunately, I don't have the luxury to spend sufficient professional time to build a convincing argument one way or the other.)--Steuard 21:27, Nov 12, 2004 (UTC)

Discussion over the value of Heim's paper and books

Heim was known to some extent in the English speaking world in the 1950s - Werner von Braun, then prominent in the US space program, contacted Heim on the status of his theory then. Although He was eccentric in avoiding contact with the scientific community, preferring to work alone, he did publish at least once in a recognised physics journal: in the Max Planck Institue for elementary particles (Munich) publication "Zeitschrift fuer Naturforschung":

Heim; B; Vorschlag eines Weges zur einheitlichen Beschreibung der Elementarteilchen; Zeitschrift fuer Naturforschung; 32a; 1977; 233 - 243; Artikel;

There was a very positive response to this article, but unfortunately Heim could not be persuaded to follow it up. There is also a two-volumed book "Elementarstrukturen der Materie" (elementary structures of matter) which gives the theory, in German.

Heim; Burkhard; Elementarstrukturen der Materie; Einheitliche strukturelle Quantenfeldtheorie der Materie und Gravitation; Band 1; Resch Verlag; Innsbruck; 1989; 89: 2. erweiterte; x + 309; ISBN 3853820085;

Heim; Burkhard; Elementarstrukturen der Materie; Einheitliche strukturelle Quantenfeldtheorie der Materie und Gravitation; Band 2; Resch Verlag; Innsbruck; 1984; 96: 2; xii + 385; ISBN 3853820360;

Heim; Burkhard; Droescher, Walter; "Einfuehrung in Burkhard Heim: Elementarstrukturen der Materie; Mit Begriffs und Formelregister"; Resch Verlag; Innsbruck; 1985; 96: 2 verbessert; 149; ISBN 3853820387;

As for the theory omitting the strong force and quarks: this is not entirely true. The reason that Baryons are treated as elementary particles is that they are seen as complex processes with interactions sometimes leading to apparent condensations or thickenings which effect scattering experiments to give the impression of quarks. Thus in Heim theory, this explains why quarks are never seen in isolation - they are viewed as aspects of the internal processess of the Baryons. Remember that the fundamental element of Heim theory is the Metron, of dimension h*h, which makes it smaller than strings, so there is room for much internal structure in realtively large particles such as the baryons.

The community working on Heim theory is indeed rather small, as considerable mathematical experise is needed to make any headway on the theory. Thus at the moment there is a Catch 22 - to get more physicists involved, more publicity is needed. But without their involvement, it is hard to attain publicity. One of the problems with Heim is that he waited so long before showing any results in public. He worked closely with prominent theorists such as Pascual Jordan, but they are all dead now and the new generation of physicists knows essentially nothing about Heim. The effort of familiarisation with Heim's special notation and methods frightens off many physicists. Thus again there is a catch 22 - more recognition for the theory will be attained only when more physicists work on it, but they won't work on it until it is recognised. This catch-22 arises because he avoided the normal channels of publication. But there are comparable cases in the past of scientists sealing themselves from the world - think of Newton's Year of Miracles - in isolation due to plague, he occupied his time by inventing calculus, discovering the chromatic composition of light, and conceiving of the inverse-square law of universal gravitation.

hdeasy

--hughey 15:19, 12 Nov 2004 (UTC)hdeasy

Using the SPIRES database of high energy physics publications to search for author Burkhard Heim, it looks like the paper that you mentioned above was in fact his only published journal article. Moreover, SPIRES indicates that no high energy physics paper has ever cited Heim's article (the database does not track citations of books, although it does list a few by him). Thus, if there was a "very positive response" to his article, it does not appear to have come from the physics community.
Regarding my comments about the nuclear forces being apparently absent, I appreciate your clarifications (they fit well with what I gleaned from my brief reading of the linked website earlier). The trouble is that the predictions of the standard model (which includes a detailed mechanism for the nuclear forces) have been verified to very high precision over the past twenty or thirty years. I am awfully confident that any "theory of everything" must reduce to the standard model in limits appropriate to current experiments, or be ruled out by experimental data. My brief look at Heim's work didn't turn up anything that looked like SU(3)xSU(2)xU(1) nor any real hint of matter containing the top quark (for example), and while I didn't understand it entirely, it looked like it predicted a neutral partner of the electron (maybe even with the same mass?). Any of those problems, if they are really there, would essentially doom the theory, and that's just the first few things I could see. At best, it might fit Fermi's comment on one of Einstein's unification attempts (warning: I haven't been able to verify this): "Beautiful theory, wrong universe."--Steuard 22:07, Nov 12, 2004 (UTC)

Challenges in following Heim's theory

Since Heim's theory is an extension of Einsteinian theory into the micro realm with modified Riemannian geometry, and since it uses a differencing method instead of calculus, familiarisation with the theory is difficult. Heim did in fact take recent developments in physics into account. However, his special notation made representation of his work in technical journals scarcely possible, as the full delineation covers about 2000 pages. In addition, Heim did not speak English. Translation of his specialist work would had been too costly for him as a private individual.

It must be pointed out again that Heim was blind, nearly deaf and without hands, which is why he did not attend congresses or inteact in the normal way with the scientific community. Instead, he concentrated on coming up with results without losing much time in discussions over methods and mathematical inadequacies (which the Heim theory group have discovered and are now in the process of correcting).

The main result so far, confirmed by the DESY calculations, is the solution of the mass equations, which allows particle masses to be calculated to great precision, without need of a Higgs mechanism. What is still incomplete is a selection rule for the lifetimes of excited particle states, for which Heim indicated so far only the theoretically possible masses. The second large step, which still has to be taken, is the full description of particle interactions. This is perhaps where the analogies to the standard model with its symmetry groups will become apparent. But this requires much work by the international theoretical community. Theoreticians should realise that Heim theory completes the geometrisation begun by Einstein. Improving the interface with quantum theory is currently being investigated by Heim's colaborator Walter Droescher. But the work should be thrown open to the international community - only after that has been done can it 'take the world by storm'.--hughey 11:57, 15 Nov 2004 (UTC)

In http://www.heim-theory.com/downloads_pw/D_Zur_Herleitung_Der_Heimschen_Massenformel.pdf it is stated that the existence of neutral electrons has not been ruled out by CERN physicists. They would be difficult to detect due to low scattering cross section, though maybe they might still be found in cosmic rays. From http://www.heim-theory.com/Contents/Introduction_to_Heim_s_Mass-Fo/introduction_to_heim_s_mass-fo.html

"For further empirical tests Heim investigated proton-electron interaction in H-atoms. On this occasion a relation for the finestructure constant ± could be derived, in which a correction must be performed, which is required by the existence of R3-celles due to metrons, and which yields the numerical value: 1/± = 137,03603953 ... The theory predicts a new particle o+ (omicron), whose mass is about 1540 MeV/c². One of the resonances of the omicron is located at 2317.4 MeV/c², which is exactly the value for the particle DSJ*(2317), which recently was detected by the Barbar Collaboration experiment at SLAC (2003)." Of 14 particles for which Heim theory gives lifetimes, 12 are within the limits of experimental error.--192.171.3.126 11:46, 16 Nov 2004 (UTC)

I really don't have the time to investigate or discuss this theory at length (and Wikipedia isn't the place for such discussions anyway, except as they relate to the content of the articles). But with reference to "neutral electrons", very general searches for such things have been carried out (see the relevant Particle Data Group report at [1] for details and references). he current lower bound on the mass of an unknown neutral lepton is about 40 GeV at 95% confidence. Based on that, it sounds like a hypothetical neutral lepton with a mass five orders of magnitude lower (0.5 MeV) is absolutely ruled out. I'm sure that with sufficiently bizarre couplings to other matter such a particle could still be possible, but my understanding is that the current limits don't require very strong assumptions at all. Unless Heim's theory specifically predicts truly unexpected couplings for that particle, or can be modified so that the particle is not predicted to exist, it's ruled out.--Steuard 17:49, Nov 16, 2004 (UTC)

In http://www.heim-theory.com/Inhalt/Einfuhrung_in_die_Heimsche_Mas/einfuhrung_in_die_heimsche_mas.html the site http://pdg.lbl.gov is listed as a reference, so this was presumably taken into consideration in stating that CERN physicists say a neutral electron has not been excluded. I am seeking clarification from the Heim Theory group on the CERN statement on this issue. However, even if the theory had one or two defects, the accurate prediction of masses, fine structure constant etc. with only G, h and c as input parameters, indicate that it is on the right track.--hughey 11:57, 18 Nov 2004 (UTC)

The neutral electron, with somewhat different mass than the normal charged electron (the field's mass is missing, and therefore the mass is slightly lower) does not contradict QED (which applies only to charged particles). A particle physicist of CERN (Dr. Dehm) had suggested an experiment approximately 20 years ago in order to prove that such a particle (with very small interaction cross-section) exists. At that time there was an essay (exact reference soon, hopefully) in ApJ, according to which astrophysicists had found a neutral particle during investigation of particle beams from areas with strong magnetic fields. As the discovered particle was not diverted by interstellar magnetic fields, it had to be neutral. But the well-known neutral particles have too short a life span, to be able to reach detectors on earth. Therefore the astrophysicists assumed at that time that there had to be a neutral particle with small mass and essentially infinitely long life span. A neutral electron therefore cannot be excluded! Dr. Dehm wanted to suggest an appropriate experiment with CERN. That would have been only reasonable, however, if Heim theory had been recognized in principle by the Mainstream. But that was - as we now know - unfortunately not yet possible. Walter Droescher further developed Heim theory in 8 dimensions, and showed that the internal fine structure of the particles could be interpreted as quarks and gluons. This theory is identical to the SU(3)xSU(2)xU(1) of the Standard Model. In the theory of Heim all possible particles, including neutrinos with finite masses, and lifetimes, are geometrodynamically given. Droeschers extended theory succeeds in additionally describing the interactions and interaction constants (very exactly). Therefore the strong and the electroweak forces are only indicated in Heim-Droescher theory. How one arrives at a neutral electron, is a result of the mass formula with its geometrically explained quantum numbers.

(answer from Heim-Theory member) --195.93.60.11 17:32, 19 Nov 2004 (UTC)

So, if I understand what you're saying here, the claim that a neutral electron (with slightly lower mass than the normal electron) is not excluded is based on a hypothesis in a twenty-year-old essay on astrophysics. That doesn't address my basic question about this particle, which is how it would evade the current experimental lower bound on neutral lepton masses of 40 GeV. As for an experiment to search for a long-lived, low mass neutral particle not happening, I'm not clear on how that would differ from the ongoing experiments that set that 40 GeV bound. But I would think that if the astrophysical arguments you mentioned continued to be taken seriously, the search would have been carried out on that basis alone, whether or not Heim's theory was widely accepted.--Steuard 21:13, Nov 19, 2004 (UTC)

Requesting and disputing various "dirt"

More dirt please. I'm happy to learn the positive elements of Heim's work. But I only see one reason that his theories aren't accepted: "publishing with an obscure publishing house, resulting in errors in the presentation". Seriously, this is the only reason his theories aren't more well known? Sorry, but I don't buy that. This article seems a bit too positive about Heim. I'm ok with the positive aspects but some of these criticism should be added to this article to help balance the effusive treatment that Heim is given here. WpZurp 16:17, 20 Nov 2004 (UTC)

Hmm, "obscure publishing house" ... is this code for vanity press? Just who is the publisher and what else did they publish? Can anyone confirm or deny the merits of the publisher? WpZurp 17:24, 20 Nov 2004 (UTC)
Has "agreement with experiment achieves seven decimal places of accuracy" been independently confirmed? If so, this would give strong confirmation of his theories. If not ... well ... we all know about cold fusion and fraud with superconductors. WpZurp 17:31, 20 Nov 2004 (UTC)

Ok, I've moderated the positive glow of this article. Hopefully, I haven't taken Be Bold too far. Personally, I believe my modifications have given Heim's work a more credible, scientific feel because of the balance I've introduced. However, I'm not a physicist, just a skeptic so I gladly accept correction from those more knowledgeable than me. WpZurp 17:41, 20 Nov 2004 (UTC)

One could write a long article on all the reasons that Heim sank into obscurity. The first was his handicap - blind, near deaf and minus hands, he was cut off from uni life. Disability allowance made him independent financially so he didn't have to work out of a university. This alone was sin enough against the stifling conformism of recent years. The publisher in question is Resch Verlag of Austria - associated occasionally with somewhat new-age type publications. Heim, like Newton, dabbled in mystic stuff and when it came to publish his scientific work unfortunately remained loyal to Resch instead of seeking a proper science publisher. So e.g. Hawking gave as his reason for not going through Heim's opus its non-science publisher. Aren't those reasons enough, apart from the difficult notation and maths/physics of the full derivations?

--195.93.60.11 22:00, 20 Nov 2004 (UTC)

First, an update to the Google search results mentioned above: if you search for "Burkhard Heim" together with at least one of "physics OR proton OR electron OR physikers OR weltbild OR Heimsche OR space OR theory", you get under 700 results, so that 15,000 figure is probably counting a lot of unrelated pages (even if I've left out a number of good German keywords). That's still a decent number, but it's far from passing my "more than me" test. (And for the record, a Google search for "German Hawking" and "Heim" gives no results at all.)
In doing that search, I found another source of information about Heim at a site called "Protosimplex". It seems to have quite a bit of information translated to English from German (if only roughly), and it's pretty clearly written by a Heim supporter. To someone moderately skeptical of Heim, I think the site could satisfy some of WpZurp's desire for "dirt". A few quotes from various places there:
  • "Heim could write an evening-filling detective story about his experiences with criticism, fraud, theft, tried kidnapping on his own person, suspicious evaluation by small and large intriguers."[2] (section "Support, envy, and ignorance")
  • "Heim extracts himself from adjustments of arms industry by turning for a while to paraphysical research... On one hand Burkhard Heim succeeds thereby in installing an image to be a kind of crank which discredits him in intended way to the management. On the other hand he made in this time experiences, which convinced him of the existence of rare paranormal phenomena." (same page and section)
  • "Also among his teachers there wasn't anybody who supported Heim." (same page and section)
  • A venture into evolutionary biology: Heim somehow analyzed the timing of the appearance of "ingenious" features in different species and concluded that "probabilities during mutation were controlled somehow in such a way that ingenious results developed with priority." (same page, previous section)
  • "A spirit-like process or "body" in not-material space G4 (x9... x12) is acting as a producer of an idea. The idea is generated by a projection into the space of ideas I2 (x7, x8)."[3]
At least for me, these sorts of things don't inspire a lot of confidence. I become rather skeptical when someone claims to have found stunning new results in two very different scientific fields (physics and evolutionary biology, in this case). I'm mildly skeptical in general about those who insist on the existence of paranormal phenomena. And I'm incredibly skeptical when someone includes "ideas" and "spirit" in a theory of physics. And it sounds like Heim's teachers did not accept his work (and they were presumably among the scientists most likely to give him a fair hearing).
At any rate, I think that I've looked into the theory as much as I care to, at least for now. I don't have the time to dig through Heim's apparently copious writings, even if they were available in English. The concerns I have about the purely physical aspects his work based on experimental evidence (as stated in earlier comments) already make me doubt his claims, and for me, the asserted connections to evolution, mind, and spirituality pretty much seal the deal. I suspect that most scientists would say the same (and probably less politely). --Steuard 23:38, Nov 20, 2004 (UTC)

Thanks for all the great dirt. I'll shift some of it over to the article to add more balance to this "next Einstein". WpZurp 00:05, 21 Nov 2004 (UTC)

Rebuttal to collecting dirt

Ahh, Steuard, you disappoint me. I really think you belong to the sort of scientist who would have rejected Newton if he had just hit the scene today, as there would be 20,000 hits for +Newton +Alchemy, and only 6000 for +Newton +gravity. By focussing on Heim's more 'mystic' side, you seek to flee the debate on the hard maths-phsics front. For example, it matters not a jot if Heim believed that pigs could fly - if he successfully predicts the masses of the particles this result stands alone. His was a beautiful mind - apparently he could learn a language in a few hours (but not English, amusingly, as he had something against that language - many whould share that suspicion of the triumphal march of anglo-saxon) and had a perfectly edetic acoustic memory - he could recall equations 30 years after his wife had read them to him, verbatim, but only if they were read aloud - not if he read them with his poor residual eyesight. Again the analogy is to John Nash of the film "beautiful mind" - the latter produced nobel prize winning theories despite seeing non-existent entities and believing in paranoid conspiracies - you would be throwing the baby out with the bathwater if you rejected his maths/economic theories just because he suffered from a dose of psychosis. I.e. stick to the knitting and don't go digging up dirt to justify the laziness of ignoring the theory. Also, rahter than quoting from the dilettantish protosimplex site, why not from Heim-theory. Let's see how our 'scientifically challenged' dirt-monger (what is the Wikipedia stance on mud-slinging?) deals with the following:

"In the beginning of the 1950s, Heim discovered the existence of a smallest area (the square of the Plancks length) as a natural constant, which requires calculations with area differences (called metrons) instead of the differential calculus in microscopic domains. Here we use selector calculus, which Heim employs exclusively in his books, only when its use is indispensable and maintain the general tensor calculus otherwise. For comparison with the work of Heim, in the introduction we discuss briefly the state of the art in the domains of elementary particles and in structure theory. Heim begins by adapting Einsteins field equations to the microscopic domain, where they become eigenvalue equations. The Ricci tensor in the microscopic domain corresponds to a scalar influence of a non-linear operator Cp on mixed variant tensor components of 3 rd degree ϕ p kl (corresponding to the Christoffel-symbols Γ p kl in the macroscopic domain). In the microscopic domain the phenomenological part will become a scalar product of a vector consisting of the eigen values λ p(k,l) with mixed variant tensorial field-functions. These terms are energy densities proportional:--195.93.60.11 10:16, 21 Nov 2004 (UTC)

Hi, 195.93.60.11, I see that you find that Heim's contributions have merit. I'm interesting in your point of view.
So far my experience with Heim has had two strands: (1) he's an amazing genius neglected by a cruel scientific community; (2) he's a crank that has pushed out a lot of dense material (sometimes veering into mysticism) that would takes years of (wasted) effort to understand. At present, I'm leaning more towards (2) because (1) is YACT (yet another conspiracy theory). Ideally, if Heim's work has merit, then both (1) and (2) should be discounted.
Where is the peer reviewed results of Heim's work? What are some hard results that the larger segments of the scientific community have found merit in? Has this "smallest area" discovery been accepted by physicists; do you have a reference that isn't from a Heim fan site?
Early versions of the article talked about Heim's "unconventional style" and a scientific community that spurned his results. But, after more discussion, I learned that Heim just hasn't put his work up to the criticism of other scientists. "Unconventional" is a term that masks Heim's lack of discipline that other scientists have to face with every publication.
It's exciting to believe that we've found the next overlooked Einstein. At first, I was rather impressed by early versions of this article until I noticed the effusive (non-encyclopedic) descriptions of Heim and until I started digging deeper. Then, I discovered a lack of vetting as with cold fusion and that superconductor scandal a few years back. I feel as if my open mindedness has been betrayed yet again
For every overlooked genius, there are 1000 cranks out there. There are many scientists out there considering a vast array of ideas. Anything with Heim's supposed merit would have been investigated long ago. There is simply too much competition in science to overlook such supposed breakthroughs. Where are third-party confirmations of Heim's claims from reputable sources? Or is the entire scientific community so biased that he has to deal with new age publishers?
By the way, when Newton dabbled in mysticism, it was the 1600s and witches were still being burned; Heim worked in the late 20th century with all advantages of centuries of scientific skcepticism.
WpZurp 16:02, 21 Nov 2004 (UTC)


To respond to some comments above (primarily those responding to me earlier):

(These are Steuard's points - I (Hughey) append my answers/comments prefixed with a (Hughey :) symbol and signed):

Good idea. I'll respond to your comments point by point in the same way.--Steuard 19:51, Nov 26, 2004 (UTC)
  • I would point out that my first stated concern about the theory was its "neutral electron" prediction, and I've consistently cited that as most important. That apparent experimental refutation of Heim's theory has not been effectively countered here.

(Hughey :) The main counterargument was that this particle cannot be utterly ruled out, and the successful mass predicitons are of greater interest and cannot be negated by obsessively concenttrating on the neutral electron.Although the neutral electron has not been detected in the CERN/Etc. experiments, I am still not convinced that a very low mass lepton with infinite lifespan would have been found by the experiments described. But again my earlier comments holds good - the accurate prediction of particle masses is not negated by one incorrect prediction - set against this the neutrino mass prediction made 20 years ago and still consistent with experiment - it is still a prediction: ( 0.00381 ev, 0.00537 Mev, 0.010752 Mev) compared to current upper limit of (< 0.05 ev, .< 0.17 Mev, < 18.2 Mev) (if I read the units correctly in 'selected results') respectievly. More accurate experiments may ultimately vindicate these exact predicted values. Thus a mistake in the neutral electron calculation is not a refutation of Heim theory as a whole, and may be corrected later. Oh and it seems that every time I answer one of your crucial objections it is as if it never had been and the outstanding points become what was all along most important - thus although the lack of correspodence to the Standard model's group representation SU(3)xSU(2)xU(1)was of equal (at least) importance to the neutral electron, once I answered that Droescher's update on Heim's theory had this group structure in it, it became a non-issue and no 'brownie points' were scored for showing that Heim theory passed the major test of any TOE - i.e. agreement with the Standard Model. Could this desire to shoot down Heim have anything to do with Steuard being involved in String theory himself? Can Strings not tolerate a little competition? --hughey 10:11, 25 Nov 2004 (UTC)

I know that you are not convinced that the proposed neutral electron does not exist, but I haven't heard you or Heim-theory.com explain why the experiments would have failed so seriously in this case. From my perspective, it seems that Heim's theory in its current form makes a definite experimental prediction, and that this prediction has been disproven beyond a reasonable doubt. If someone modifies Heim's theory to remove this discrepancy (or presents a concrete mechanism by which the particle has avoided experimental notice), great, but until then the theory has been ruled out. Lots of theories over time have had partial agreement with experiment and still ended up being wrong. (But speaking of Heim's predictions, you earlier quoted the "Abstract" document from Heim-theory.com which states that "The theory predicts a new particle o+ (omicron), whose mass is about 1540 MeV/c²." I find it troubling that the "Selected results" document lists the mass of this "o+" as about 1234.6MeV/c^2. 1235 doesn't strike me as at all close to 1540, but 1540 MeV is the approximate mass of an as-yet unexplained particle possibly seen in experiments. A cynic might suggest that this "Abstract" document misstated the prediction to make Heim's theory sound more promising.)

(Hughey :) One of the professors (there are at least 5) working on Heim theory and its extensions has commented to me in an e-mail on some aspects of our discussion. First, he pointed out that there is still some uncertainty in the selection rules for particles in the mass spectrum of Heim theory, so that the neutral electron may still turn out to be forbidden in the theory. Then he pointed out that more important questions in Heim theory than e0 concern whether the condensor functions phi are tensor components, and whether the so-called eigenvalue equations actually are eigenvalue equations. Heim's theory, although as you point out, not in the language of modern physics, has all the ingredients for a TOE, as required by Einstein in his April 1950 SciAm paper. "50 years before Rovelli's book on quantum gravity, Heim introduced the concept of a quantized space, treating spacetime as a quantized field. In addition, he introduced a polymetric in a higher dimensional space, using this concept for the unification of physical interactions. In that sense, he accomplished the geometrization of physics, something Einstein tried to achieve by making his metric tensor unsymmetric (this theory was not correct). In that sense, I think it is justified to mention Heim in the Wikipedia Encyclopedia." In a paper to be published by the American Institute of Physics early next year (watch that space!), Haeuser & Droescher obtain, in an 8-dimensional space, a total of three gravitational interactions, predicting a repulsive gravitational force. Now admittedly this article was highly controversial among the reviewers, so that Heim theory is not yet to be seen as a mainstream physical theory. However, the potential benefits from the theory if it is right (Achievement of a TOE, revolutionary space propulsion methods etc.) are so great that they justify additional serious research. See http://www.cle.de/hpcc/ for some (English) publications by these authors on Heim.--hughey 11:37, 29 Nov 2004 (UTC)

As for the standard model gauge group issue, I didn't really know how to reply. You quoted a statement that in an extension of Heim's theory to eight dimensions, SU(3)xSU(2)xU(1) appears, but no details were given. I don't know how to judge that result: the extended theory doesn't seem to be discussed on Heim-theory.com, not even at the limited level that Heim's original theory is. Rather than expressing unsupported doubts about an unsupported claim, I decided to stick to areas where Heim theory's predictions were made relatively clear. (Brownie points would certainly be merited for showing the right gauge group structure. Brownie points are not merited for claiming the right gauge group structure.) And let's try to keep the personal comments out of this, okay?--Steuard 19:51, Nov 26, 2004 (UTC)
(Hughey ) Look in http://www.cle.de/hpcc/ "Droescher, W., Haeuser, J.

Physical Principles of Advanced Space Propulsion Based on Heim's Field Theory" for an indication of the relation with SU(3)xSU(2)xU(1) and the Standard Model. E.g.

Vk in which the physical interaction takes place. (12) The hermetry forms can also be represented by the components of the metric tensor of the corresponding subspace Vk. The superscripts, ranging from 0 to 3, in the Ç quantities refer to the respective coordinate groups. H5=(Çi m (0 ) ,Çi m (1 ) ,Çi m (2 )) photons (13) It is reasoned that hermetry forms H10 and H11 are similar to the graviton field H12, since they are both caused by transcoordinates, and thus will have a small coupling constant. The important point is that in Heim's theory there are transformation operators, S1 or S2 (not to be confused with space S2), that, when applied to one hermetry form can transform it into another one. Mathematically, these operators transform the respective coordinate from a non Euclidean to a Euclidean one. For instance, S2 applied to hermetry form H11 will transform electromagnetic radiation into gravito-photons.

H1=H1 ( I 2 ,T 1) gluons H2=H2 ( I 2 ,T 1 , R3) color charges H3=H3 ( I 2 , S 2 ,T 1 , R3) W+_ bosons H4=H4 ( I 2 , S 2 , R3) Z0 boson H5=H5 ( I 2 , S 2 ,T 1) photons H6=H6 ( I 2 ,T 1)H7=H7 (S 2 ,T 1) weak charge H8=H8 (S 2 ,R3) neutral field (particle) with mass H9=H9 (S 2 ,T 1 , R3) field (particle) with electric charge and mass H10=H10 ( I 2) probability field H11=H11 ( I 2 , S 2) gravito-photon H12=H12 (S 2) graviton. H1=(Çi m (0 ) ,Çi m (3 )) gluons H2=(Çi m (0 ) ,Çi m (2 ) ,Çi m (3 )) color charges H3=(Çi m (0 ) ,Çi m (1 ) ,Çi m (2 ) ,Çi m (3 )) W+_ bosons H8=(Çi m (1 ) ,Çi m (3 )) neutral field (particle) with mass H10=(Çi m (0 )) probability field H11=(Çi m (0 ) ,Çi m (1 )) gravito-photon H12=(Çi m (1 )) graviton. H4=(Çi m (0 ) ,Çi m (1 ) ,Çi m (3 )) Z0 boson H6=H6(Çi m (0 ) ,Çi m (2 ))H7=H7(Çi m (1 ) ,Çi m (2 )) weak charge H9=(Çi m (1 ) ,Çi m (2 ) ,Çi m (3 )) field (particle) with electric charge and mass--hughey 13:51, 29 Nov 2004 (UTC)

  • Comments on Heim's "mystic" side would be relevant to an article about him in any case, but it is my impression that aspects of this mysticism are actively incorporated into the current version of Heim's physical theory. Thus, this is not "fleeing the debate".

(Hughey :) As I understand it, the mystic aspects of Heim's theory are more a matter of interpretation than hard mathematical result, and as such can be left out of the hard physical arguments--hughey 10:27, 25 Nov 2004 (UTC)

See my reply below.--Steuard
  • I agree that the success of the theory should be its ultimate test, but understanding its derivation is a part of that (because anyone could write down an ad hoc formula that "predicts" particle masses if they knew those masses in advance).

(Hughey :) Sure they could - which is why more physicists have to work through the theory and see if it is air-tight.--hughey 10:27, 25 Nov 2004 (UTC)

  • I don't know what sites about Heim are most respected; I looked at the "protosimplex" site for its attempt to explain the basis of Heim's theory in English (it looks like Heim-theory.com hasn't translated its "derivation" document yet).

(Hughey :) But the abstract, mass formulae and other sections are already in English - and contain much more hard physics than Protosimplex.com.--hughey 10:27, 25 Nov 2004 (UTC)

Those sections of Heim-theory.com certainly contain more equations than protosimplex.com, but I don't know that I'd agree that they contain a lot more physics. The documents don't say a whole lot about where the equations come from, and the real physics of a theory is in the "whys", not in the "whats". I felt like the protosimplex site tried harder to explain how the theory worked, even if it didn't get as far as presenting its quantitative results.--Steuard 20:21, Nov 26, 2004 (UTC)
Here are a few comments after looking at Heim-theory.com in a bit more depth:
  • The "Goals" page at Heim-theory says that the two additional dimensions of Heim's theory "are not measurable by physical instruments and have an informational character, since they describe qualitative aspects (meanings) of material organisations." That seems to say that Heim's "mysticism" is directly connected to his physics.

(Hughey :) Though this is mentioned as a goal, the mystic side is nowhere to be seen in the hard equations of the other sections.--hughey 10:27, 25 Nov 2004 (UTC)

But this "mystical" explanation is presented here as the reason that the two additional dimensions "are not measurable by physical instruments". (In the context of the page, this claim was made in contrast to the Kaluza-Klein mechanim, that is a likely reason that string theory's extra dimensions have not been seen in experiments.) The discrepancy between the observed four dimensions and Heim theory's six dimensions has to be explained somehow, and this is the only explanation that I've found (it doesn't seem to be mentioned in the more equation-heavy documents).--Steuard 20:21, Nov 26, 2004 (UTC)
  • The "Remarks" page points out that "Heim's books contain some vagueness - beside the correct results". That may be understandable under the circumstances, but you can't expect a scientific theory to be taken seriously by the community until that vagueness is eliminated. If that is part of the current mission of Heim-theory, I wish them well.
  • The "1982 Mass Formula" page includes a formula for Heim's calculation of the fine structure constant along with the numerical result for its inverse. The formula is not explained, but it is apparently exact, as it is simply a (messy) algebraic combination of integers and pi. The numerical result stated there (137.0360085) differs from the current experimental value by just under 10^(-5), but the current experimental uncertainty is under 5*10^(-7). That's a difference of a whopping 20 standard deviations, which corresponds to an essentially zero probability of agreement.

(Hughey :) The formulae used involving expressions of Pi are apparently approximations, as the 1992 version gave a better approximation than the 1982 formula, but there is probably yet another approximation (taking more terms in an expansion?) that would get even closer to the measured value. Has the Standard model produced such a compact formula for this fundamental constant? --hughey 10:27, 25 Nov 2004 (UTC)

But the 1992 formula isn't given, nor is it made clear in what sense that formula is "better" (besides giving better agreement with the known answer). It's entirely possible that you're right and these are just successively better approximations to something, but I haven't found any place where the site actually says that. Also, I don't see any sign of a "small parameter" in the formula that would define a series expansion of some sort: there's no indication of what the "something" being approximated would be. As for the standard model, this constant is a parameter of that theory, not a testable result of it. (That's one reason that we're looking for something "deeper". I'll readily acknowledge that string theory is very far from making any sort of prediction here.) But in the end, making a prediction is the make or break moment for a theory: experimental predictions are the way that theories put themselves on the line, to live or die by their success. There aren't prizes for coming close.--Steuard 21:10, Nov 26, 2004 (UTC)
  • Worse yet, I calculated the result of the formula myself (using Mathematica), and found 1/alpha of 137.049188, which differs from the stated result (and the experimental value) by 0.013. That suggests to me that Heim-theory made a serious error in evaluating the formula (which happened to make their result look much closer to the actual value). I invite others to evaluate the formula there themselves to confirm this result; it's on pages 3-4 of the PDF.

(Hughey :) The 1982 formula used by you here is not the one used to derive the value 137.0360085 - the latter is clearly stated to be from the 1992 improved approximation, which is not given on the Heim-theory web site, as far as I can see.--hughey 10:27, 25 Nov 2004 (UTC)

Very true. But the older 1982 result ostensibly obtained from the given equation is 137.03596147, which is very close to the 1992 result but even farther from the actual solution to the equation. (I should have made that clear before, sorry.)--Steuard 21:10, Nov 26, 2004 (UTC)
  • The "Selected results" page includes a graph on p. 12 showing how the Heim-predicted masses change for different input values of the gravitational coupling G. The current best value of G is 6.6742+/-0.0010 *10^-11 m^3 kg^-1 s^-2, an uncertainty of 0.015%. The graph says that the Heim Theory group uses a value of G = 6.6733082 (with the same units), which has three more digits of precision than seem at all justified. More generally, I don't see how Heim theory's mass predictions could possibly agree with experiment to as many as seven decimal places (as claimed on the "Abstract" page) if its predictions depend on G as shown in this graph. The uncertainty in G should limit the theoretical mass values to a similar precision.

(Hughey :) You forget that the mass depends on c, h and G - as the errors in c and h are miniscule compared to that in G they are not mentioned. But if the masses depend on G in a non-linear way with other terms depending on c and h or constants like Pi, then an error in mass prediction will not scale directly with G. It might even be rather insensitive thereto.--hughey 10:27, 25 Nov 2004 (UTC)

As it happens, I did not "forget" those dependences, nor overlook the possibility of non-linear dependence on G. As you point out, the uncertainty in h is much smaller, so I would expect the uncertainty in G to dominate the result (as for c, you seem to forget that it is now defined as an exact number). But more importantly, the graph that I mentioned shows how some of the mass predictions change for various values of G, and the changes are substantial. (I mentioned that above: "...if its predictions depend on G as shown in this graph".)--Steuard 21:10, Nov 26, 2004 (UTC)
  • In my experience, serious physicists always, always list theoretical uncertainties with their predicted values. The "Selected results" page lists a great many numerical predictions, but never comments on theoretical uncertainty at all.

(Hughey :) The graphs in 'Selected Results' have error bars on the measured quantities. The fact that the calculated values are within the upper and lower boundary limits shows that their errors are not great. Also, by looking at the spread of mass values in these graphs for estimates using different values of G, one can relate differences in G to effective errors in the masses.--hughey 10:27, 25 Nov 2004 (UTC)

Yes, the graphs show experimental error bars, but neither the graphs nor the tables of predicted data list theoretical uncertainties. No serious physicist would omit them. It's very dangerous to suggest that theoretical uncertainty can be deduced from the degree of agreement with experiment (I've never liked the term "error", because it encourages such misconceptions). As we've both said, the spread of theoretical predictions on that graph gives an estimate of the theoretical uncertainty. That uncertainty seems to be much greater than the "seven decimal place agreement" that Heim's supporters claim: it really feels like those who made these summary tables and who make the "seven decimal place" claim honestly do not understand the importance of uncertainty calculations.--Steuard 21:10, Nov 26, 2004 (UTC)
--
That's not an exhaustive commentary on the material at Heim-theory, and I'll readily admit that I approached the material with a critical eye. But at the very least, I am convinced that Heim's work would need a great deal of polishing and improvement before it could hope to be taken seriously as a theory of physics. Until that point, the Wikipedia article should make its current state clear.--Steuard 00:33, Nov 22, 2004 (UTC)

Heim not crank and recent literature on cold fusion

Heim is not just any old crank. He worked with brilliant theoreticians like Pascual JOrdan ( see http://de.wikipedia.org/wiki/Pascual_Jordan ). However, after this phase of involvement with the scientific community he withdrew from public life for such a long time that Jordan and the others who knew him simply died away, and he is no longer known to the top physicists of today. It's almost the opposite of what was said by, I think, Max Planck, i.e. A controversial theory will only be accepted when the old guard has died away. As for peer-reviewed work - there are 2 problems here - first, as Heim was not fighting for tenure he was under no pressure to publish. Secondly, if he really was a super-Einstein he was simply peerless: this was effectively the case as for a peer to review a paper by Heim he would have had to work through the basic theory with its thousands of pages. What journal is prepared to ask a referee to go away for a few years of study before being able to review a paper? The encouraging thing is, though, that those physicists who have worked their way through the theory have not found it wanting - apart from discovering some minor errors that they are now correcting and which didn't effect the mass calculations. Please don't refer to this Heim-theory group as 'Heim fans' - that is an absurd description of physicists working hard to come to grips with a difficult theory. Again when you say 'Heim just hasn't put his work up to the criticism of other scientists' you assume he was a normal able bodied, ambitious academic. In fact he did put his theory to some physicists, but only those he knew personally, which had shrunk to a small circle through death as mentioned above. The Heim-theory web site has enough background to be of interest to serious physicists - those behind it have also gone to the effort of converting as much as possible from selector calculus to the normal form. As yet, the additional step of translating the bulk to English has not been carried through. But that too will be corrected soon. As they say there, it was thought appropriate to publish on the web, as the theory is no longer original.

On the question of why more physicists haven't investigated Heim yet, or as you put it: "Anything with Heim's supposed merit would have been investigated long ago" remember that String theory was out in the wilderness for many years - 30, 40 or 50 depending on what you consider the origins. The string people then were convinced of its merit, but couldn't get more than a tiny group to look at it. Shades of Heim.

Finally, on cold fusion, don't loose hope just yet - the DOE has given it a new lease of life: in the news section of your link on CF: Cold Fusion Back From the Dead ( http://www.spectrum.ieee.org/WEBONLY/resource/sep04/0904nfus.html ) Spectrum IEEE Sep 2004 Cold Fusion Breakthrough? (http://www.heise.de/tp/english/inhalt/co/18580/1.html ) Telepolis Germany - Oct. 17, 2004 ICCF-11 Overview With Links to Presentations ( http://www.iscmns.org/iccf11/iccf11.htm ) International Society for Condensed Matter Nuclear Science www.iscmns.org Nov 2004 Warming Up to Cold Fusion ( http://www.washingtonpost.com/wp-dyn/articles/A54964-2004Nov16.html ) Washington Post - Nov. 21, 2004

So if the CF brigade is now vindicated the campaign against them in the early 90s may begin to resemble the witch hunts of Newton's time. Does anything really ever change?

--195.93.60.11 18:27, 21 Nov 2004 (UTC)

I consider your response to be reasonable and has given me something to think about. As a skeptic, I still sense something is a bit fishy but I'm going to let things stew in my mind for a while. In particular, Einstein's work deserves respect precisely because its undergone the kind of unrelenting attack that Heim's work has yet to undergo.
By the way, the NPOV "witchhunt" comment doesn't really belong in Burkhard Heim but, instead, in Talk:Burkhard Heim. Also, I encourage you to get an account; I confess that talking to a number also tweaks my skepticism.
WpZurp 19:05, 21 Nov 2004 (UTC)
Hughey here - sorry, I've 3 different IP addresses from which I access Internet: only one of them recognises my Wikipedia ID and in the others I can't see how to log-in. Thus IPs 195.93.60.11 and 131.176.86.2 are both synonyms of yours truly - --hughey 08:40, 23 Nov 2004 (UTC)
(Steuard here:) This talk page has gotten long enough that Wikipedia's software is now giving warnings about it. At some point, I think we'll need to move some of the discussion to an archive page.
Personally, I'm fascinated by this back-and-forth discussion. To help with the archiving (and maybe delay it), I have broken up this lengthening discussion into a few sections which, I hope, have NPOV section titles. WpZurp 16:27, 22 Nov 2004 (UTC)
Thanks for the sectioning; it will help a lot (and I've used them to make it clearer where my latest comments belonged in the grand scheme of things). My one concern about this discussion is that I don't think Wikipedia talk pages are really intended for in-depth discussions like this. My personal justification for doing so anyway is that I don't think there's any real discussion of Heim's theory by non-supporters elsewhere on the web, and I want this entry to be "balanced" as much as possible. (I'm tempted to attempt a thorough rewrite of the article, but I wouldn't have the time for quite a while, and I suspect that Heim's supporters wouldn't see me as impartial at this point.)--Steuard 18:01, Nov 22, 2004 (UTC)
Personally, I believe the Wikipedia talk pages are great for this kind of stuff. I imagine researchers in the future poring over these talk pages to understand the process of collaberative creation. (By researchers, I mean of the social sciences, not physicists.) I also consider Wikipedia to be an important document and I like to see the process of creation which demystifies the creation of media. WpZurp 18:36, 22 Nov 2004 (UTC)

(N)POV in the current article

Hdeasy recently made some changes to the main article with the edit summary "More toning down of sceptical POV in the light of new theoretical work." I'd just like to make it clear that in my opinion, the current article would require extensive work to be considered NPOV. I hope that I'll be able to do some of that rewriting myself eventually, but it will be a while before I have the large block of time that would be necessary to do it right. (I'm not willing to put my name on incremental updates of the article as it currently stands.)

Finally, a note on the "skeptical POV" that is currently somewhat represented in the article (and on this talk page): I believe that the vast majority of physicists would not subscribe to the skeptical POV that I have taken here, but to a sort of "dismiss out of hand" POV. Some would be polite about it (as Hawking apparently was, based on your comments above) and some would be downright rude or mocking. The fraction of physicists who would take even as much time as I have to look into the theory is probably quite small. Based on what I've seen thus far, I would guess that the number of people out there who firmly believe that Heim was on the right track numbers in the dozens or perhaps the hundreds (feel free to correct me on that if you've got a better estimate), and it sounds like the number of professional scientists who feel that way is roughly six. A fully NPOV article should probably give some sense of those proportions, and be balanced accordingly.--Steuard 17:41, Dec 1, 2004 (UTC)

I am trying to get a better estimate of total nr. of professional scientists who believe that there is something to Heim - in the Heim-theory site it is stated that 8 physicists belong to the group, of which 5 are professors. At least one other professor and maybe two state elsewhere that they are deeply intersted in Heim theory but are not associated with the Heim-theory group. Add people like me, with a degree in physics and post-grad in astrophysics and we are maybe talking of up to 100 interested. My attitude is that Heim was not a trickster, worked with Jordan, Heisenberg et al. and so if his theory appeared to predict masses with the stated accuracy then it is certainly woth looking into. Droescher's 8-d version of the theory has what looks like quintessence in it, which might be another predictive aspect. The current (Jan 2005) print issue of the popular on-line German magazine Telepolos http://www.heise.de/tp/r4/buch/default_1.html has an article on Heim, his theory and space propulsion - this has aroused a lot of interest in Germany, so maybe amongst those now increasingly accessing www.Heim-theory.com after being directed there by the magazine article are some interested physicists.--hughey 09:56, 8 Dec 2004 (UTC)