Lithium bis(trimethylsilyl)amide: Difference between revisions
Appearance
Content deleted Content added
Updating {{chembox}} (no changed fields - added verified revid - updated 'ChemSpiderID_Ref', 'DrugBank_Ref', 'UNII_Ref', 'ChEMBL_Ref', 'ChEBI_Ref', 'KEGG_Ref', 'StdInChI_Ref', 'StdInChIKey_Ref', 'ChEBI_Ref') per [[WP:CHEMVALID|Chem/Drugbox validation |
CrafterNova (talk | contribs) →As a base: wording fix |
||
(134 intermediate revisions by 60 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Chemical compound}} |
|||
{{chembox |
{{chembox |
||
| Verifiedfields = changed |
|||
| verifiedrevid = 443621073 |
|||
| Watchedfields = changed |
|||
| ImageFile = LiHMDS.png |
|||
| verifiedrevid = 450703366 |
|||
| ImageSize = 200px |
|||
| ImageFile1 = Li-HMDS.svg |
|||
| IUPACName = lithium bis(trimethylsilyl)azanide |
|||
| ImageCaption1 = Monomer (does not exist) |
|||
| OtherNames = Lithium bis(trimethylsilyl)amide and lithium hexamethyldisilazide |
|||
| ImageSize1 = 150px |
|||
| Section1 = {{Chembox Identifiers |
|||
| ImageFile2 = Cyclic Trimer of Lithium bis(trimethylsilyl)amide Structural formula V1.svg |
|||
| CASNo_Ref = {{cascite|correct|CAS}} |
|||
| ImageCaption2 = Cyclic trimer |
|||
| ImageFile3 = File:The real "Li N(Sitms2 )2".png |
|||
| PIN = Lithium 1,1,1-trimethyl-''N''-(trimethylsilyl)silanaminide |
|||
| OtherNames = Lithium hexamethyldisilazide<BR>Hexamethyldisilazane lithium salt |
|||
|Section1={{Chembox Identifiers |
|||
| CASNo_Ref = {{cascite|correct|CAS}} |
|||
| CASNo = 4039-32-1 |
| CASNo = 4039-32-1 |
||
| UNII_Ref = {{fdacite|correct|FDA}} |
|||
| PubChem = |
|||
| UNII = RC4N1I108M |
|||
| SMILES = C[Si](C)(C)[N-][Si](C)(C)C.[Li+] |
|||
| PubChem = 2733832 |
|||
}} |
|||
| ChemSpiderID_Ref = {{chemspidercite|changed|chemspider}} |
|||
| Section2 = {{Chembox Properties |
|||
| ChemSpiderID = 21170111 |
|||
| Formula = C<sub>6</sub>H<sub>18</sub>LiNSi<sub>2</sub> |
|||
| SMILES = C[Si](C)(C)[N-][Si](C)(C)C.[Li+] |
|||
| MolarMass = 167.326 g/mol |
|||
| SMILES_Comment = ionic monomer |
|||
| Appearance = White solid |
|||
| SMILES1 = C[Si](C)(C)[N+]0([Si](C)(C)C)[Li-][N+]([Si](C)(C)C)([Si](C)(C)C)[Li-][N+]([Si](C)(C)C)([Si](C)(C)C)[Li-]0 |
|||
| Density = |
|||
| SMILES1_Comment = cyclic trimer |
|||
| MeltingPt = 71-72 °C |
|||
| InChI =1S/C6H18NSi2.Li/c1-8(2,3)7-9(4,5)6;/h1-6H3;/q-1;+1 |
|||
| BoilingPt = 80 - 84 °C (0.001 mm Hg) |
|||
}} |
|||
| Solubility = decomposes in water |
|||
|Section2={{Chembox Properties |
|||
| SolubleOther = THF, hexane |
|||
| Formula = {{chem2|LiN(Si(CH3)3)2}} |
|||
}} |
|||
| C=6|H=18|Li=1|N=1|Si=2 |
|||
| Section3 = {{Chembox Hazards |
|||
| Appearance = White solid |
|||
| MainHazards = flammable |
|||
| Density = 0.86 g/cm<sup>3</sup> at 25 °C |
|||
| FlashPt = |
|||
| MeltingPtC = 71 to 72 |
|||
| Autoignition = |
|||
| BoilingPtC = 80 to 84 |
|||
}} |
|||
| BoilingPt_notes = (0.001 mm Hg) |
|||
| Section8 = {{Chembox Related |
|||
| |
| pKa = 26 |
||
| Solubility = decomposes |
|||
| OtherCations = |
|||
| SolubleOther = Most aprotic solvents<BR>[[THF]], [[hexane]], [[toluene]] |
|||
| OtherFunctn = |
|||
}} |
|||
| Function = |
|||
|Section3={{Chembox Hazards |
|||
| OtherCpds = [[Sodium bis(trimethylsilyl)amide]], [[Potassium bis(trimethylsilyl)amide]]}} |
|||
| MainHazards = flammable, corrosive |
|||
}} |
|||
|Section8={{Chembox Related |
|||
| OtherCompounds = [[Sodium bis(trimethylsilyl)amide]]<BR>[[Potassium bis(trimethylsilyl)amide]]}} |
|||
}} |
}} |
||
'''Lithium bis(trimethylsilyl)amide''' (commonly abbreviated as '''LiHMDS''' |
'''Lithium bis(trimethylsilyl)amide''' is a lithiated [[organosilicon compound]] with the formula {{chem2|LiN(Si(CH3)3)2}}. It is commonly abbreviated as '''LiHMDS''' or '''Li(HMDS)''' ('''li'''thium '''h'''exa'''m'''ethyl'''d'''i'''s'''ilazide - a reference to its [[conjugate acid]] [[Bis(trimethylsilyl)amine|HMDS]]) and is primarily used as a strong [[non-nucleophilic base]] and as a [[ligand]]. Like many lithium reagents, it has a tendency to aggregate and will form a [[Cyclic compound|cyclic]] [[Trimer (chemistry)|trimer]] in the absence of coordinating species. |
||
==Preparation== |
==Preparation== |
||
LiHMDS is commercially available but can also be prepared by deprotonation of [[bis(trimethylsilyl)amine]] with [[n-butyllithium]] |
LiHMDS is commercially available, but it can also be prepared by the deprotonation of [[bis(trimethylsilyl)amine]] with [[n-butyllithium|''n''-butyllithium]].<ref>{{cite book | journal = [[Inorg. Synth.]] | doi = 10.1002/9780470132395.ch6 | year = 1966 | last1 = Amonoo-Neizer | first1 = E. H. | last2 = Shaw | first2 = R. A. | last3 = Skovlin | first3 = D. O. | last4 = Smith | first4 = B. C. | title = Inorganic Syntheses | chapter = Lithium Bis(trimethylsilyl)amide and Tris(trimethylsilyl)amine | isbn = 978-0-470-13239-5 | volume = 8 | pages = 19–22}}</ref> This reaction can be performed [[In situ#Chemistry and chemical engineering|''in situ'']].<ref name=Danheiser1996 /> |
||
:[(CH<sub>3</sub>)<sub>3</sub>Si]<sub>2</sub>NH + C<sub>4</sub>H<sub>9</sub>Li → [(CH<sub>3</sub>)<sub>3</sub>Si]<sub>2</sub>NLi + C<sub>4</sub>H<sub>10</sub> |
|||
The compound can be purified by [[Sublimation (phase transition)|sublimation]]. |
|||
:{{chem2|HN(Si(CH3)3)2 + C4H9Li → LiN(Si(CH3)3)2 + C4H10}} |
|||
LiHMDS can often be prepared ''in situ'' then reacted, as in the enolate preparation shown below under "reactions".<ref name=Danheiser1996 /> |
|||
Once formed, the compound can be purified by [[Sublimation (phase transition)|sublimation]] or [[distillation]]. |
|||
==Reactions== |
|||
LiHMDS is used to generate [[coordination complex]]es with low-coordination numbers, taking advantage of the steric bulk of the (tms)<sub>2</sub>N<sup>-</sup> ligand. Examples include M[N(tms)<sub>2</sub>]<sub>3</sub> for M = Sc, Ti, V, Fe (tms = (CH<sub>3</sub>)<sub>3</sub>Si).<ref>Donald C. Bradley, Richard G. Copperthwaite “Transition Metal Complexes of Bis(Trimethyl-silyl)Amine (1,1,1,3,3,3-Hexamethyldisilazane)” Inorganic Syntheses 1978, Volume 18, 112. {{DOI|10.1002/9780470132494.ch18}}</ref> Treatment with [[trimethylsilylchloride]] gives tris(trimethylsilyl)amine, which features a planar, 3-coordinate nitrogen. |
|||
==Reactions and applications== |
|||
In organic chemistry, LiHMDS is often used as a strong base, for example to form lithium acetylide,<ref name="Reich2001">{{cite web|url=http://cssp.chemspider.com/137|title=Addition of a lithium acetylide to an aldehyde; 1-(2-pentyn-4-ol)-cyclopent-2-en-1-ol|last=Reich|first=Melanie|date=Aug 24, 2001|work=ChemSpider Synthetic Pages|page=137|accessdate=5 September 2010}}</ref> or to form a lithium enolate, as here with [[benzylideneacetone]]:<ref name=Danheiser1996>{{OrgSynth |
|||
|author=Danheiser, R. L.; Miller, R. F.; Brisbois, R. G. |
|||
|year=1990 |
|||
|title=Detrifluoroacetylative Diazo Group Transfer: (''E'')-1-Diazo-4-phenyl-3-buten-2-one |
|||
|volume=73 |
|||
|pages=134 |
|||
|collvol=9 |
|||
|collvolpages=197 |
|||
|prep=CV9P0197}}</ref> |
|||
===As a base=== |
|||
LiHMDS is often used in organic chemistry as a strong [[non-nucleophilic base]].<ref name=chemrev /> Its conjugate acid has a [[Acid dissociation constant|p''K''<sub>a</sub>]] of ~26,<ref>{{cite journal|last1=Fraser|first1=Robert R.|last2=Mansour|first2=Tarek S.|last3=Savard|first3=Sylvain|title=Acidity measurements on pyridines in tetrahydrofuran using lithiated silylamines|journal=The Journal of Organic Chemistry|date=August 1985|volume=50|issue=17|pages=3232–3234|doi=10.1021/jo00217a050}}</ref> making it is less basic than other lithium bases, such as [[Lithium diisopropylamide|LDA]] (p''K''<sub>a</sub> of conjugate acid ~36). It is relatively more [[steric effects|sterically hindered]] and hence less [[nucleophilic]] than other lithium bases. It can be used to form various [[organolithium]] compounds, including [[acetylide]]s<ref name=chemrev>{{cite journal|last1=Wu|first1=George|last2=Huang|first2=Mingsheng|title=Organolithium Reagents in Pharmaceutical Asymmetric Processes|journal=Chemical Reviews|date=July 2006|volume=106|issue=7|pages=2596–2616|doi=10.1021/cr040694k|pmid=16836294}}</ref> or lithium [[enolate]]s.<ref name=Danheiser1996>{{OrgSynth| authorlink1-=Rick L. Danheiser |author1 =Danheiser, R. L.|author2=Miller, R. F.|author3=Brisbois, R. G.| year =1990| title =Detrifluoroacetylative Diazo Group Transfer: (''E'')-1-Diazo-4-phenyl-3-buten-2-one| volume =73| pages =134| collvol =9| collvolpages =197| prep =CV9P0197}}</ref> |
|||
[[File:LiHMDS EnolateFormation.png|500px|center]] |
[[File:LiHMDS EnolateFormation.png|500px|center]] |
||
where Me = {{chem2|CH3}}. As such, it finds use in a range of coupling reactions, particularly carbon-carbon bond forming reactions such as the [[Fráter–Seebach alkylation]] and mixed [[Claisen condensation]]s. |
|||
An alternative synthesis of [[tetrasulfur tetranitride]] entails the use of {{chem2|S(N(Si(CH3)3)2)2}} as a precursor with pre-formed S–N bonds. {{chem2|S(N(Si(CH3)3)2)2}} is prepared by the reaction of lithium bis(trimethylsilyl)amide and [[sulfur dichloride]] ({{chem2|SCl2}}). |
|||
:{{chem2|2 LiN(Si(CH3)3)2 + SCl2 → S(N(Si(CH3)3)2)2 + 2 LiCl}} |
|||
The {{chem2|S(N(Si(CH3)3)2)2}} reacts with the combination of {{chem2|SCl2}} and [[sulfuryl chloride]] ({{chem2|SO2Cl2}}) to form {{chem2|S4N4}}, [[trimethylsilyl chloride]], and [[sulfur dioxide]]:<ref>{{cite book |last1= Maaninen |first1= A. |last2= Shvari |first2= J. |last3= Laitinen |first3= R. S. |last4= Chivers |first4=T |title= Inorganic Syntheses |year= 2002 |volume= 33 |pages= 196–199 |doi= 10.1002/0471224502.ch4 |location= New York |publisher= John Wiley & Sons, Inc. |editor-last= Coucouvanis |editor-first= Dimitri |chapter= Compounds of General Interest|isbn= 9780471208259 }}</ref> |
|||
:{{chem2|2 S(N(Si(CH3)3)2)2 + 2 SCl2 + 2 SO2Cl2 → S4N4 + 8 (CH3)3SiCl + 2 SO2}} |
|||
===As a ligand=== |
|||
Li(HMDS) can react with a wide range of [[metal halides]], by a [[salt metathesis reaction]], to give [[metal bis(trimethylsilyl)amides]]. |
|||
:{{chem2|MX_{''n''} + ''n'' Li(HMDS) → M(HMDS)_{''n''} + ''n'' LiX}} |
|||
where X = Cl, Br, I and sometimes F |
|||
Metal bis(trimethylsilyl)amide complexes are lipophilic due to the ligand and hence are soluble in a range of [[solvent#Physical properties of common solvents|nonpolar organic solvents]], this often makes them more reactive than the corresponding metal halides, which can be difficult to solubilise. The [[steric]] bulk of the ligands causes their complexes to be discrete and monomeric; further increasing their reactivity. Having a built-in base, these compounds conveniently react with protic ligand precursors to give other metal complexes and hence are important precursors to more complex [[coordination compound]]s.<ref>{{cite book | author = [[Michael Lappert]], Andrey Protchenko, [[Philip Power]], Alexandra Seeber | title = Metal Amide Chemistry | publisher = Wiley-VCH | location = Weinheim | year = 2009 | isbn = 978-0-470-72184-1 | doi = 10.1002/9780470740385}}</ref> |
|||
===Niche uses=== |
|||
LiHMDS is volatile and has been discussed for use for [[atomic layer deposition]] of lithium compounds.<ref>{{cite journal|doi=10.1149/2.052203jes|title=Lithium Phosphate Thin Films Grown by Atomic Layer Deposition|journal=Journal of the Electrochemical Society|volume=159|issue=3|pages=A259–A263|year=2012|last1=Hämäläinen|first1=Jani|last2=Holopainen|first2=Jani|last3=Munnik|first3=Frans|last4=Hatanpää|first4=Timo|last5=Heikkilä|first5=Mikko|last6=Ritala|first6=Mikko|last7=Leskelä|first7=Markku}}</ref> |
|||
==Structure== |
|||
Like many [[organolithium]] reagents, lithium bis(trimethylsilyl)amide can form aggregates in solution. The extent of aggregation depends on the solvent. In coordinating solvents, such as [[ether]]s<ref>{{cite journal|last=Lucht|first=Brett L.|author2=Collum, David B. |title=Ethereal Solvation of Lithium Hexamethyldisilazide: Unexpected Relationships of Solvation Number, Solvation Energy, and Aggregation State|journal=Journal of the American Chemical Society|year=1995|volume=117|issue=39|pages=9863–9874|doi=10.1021/ja00144a012}}</ref> and [[amine]]s,<ref name=Lucht1996>{{cite journal|last=Lucht|first=Brett L.|author2=Collum, David B. |title=Lithium Ion Solvation: Amine and Unsaturated Hydrocarbon Solvates of Lithium Hexamethyldisilazide (LiHMDS)|journal=Journal of the American Chemical Society|year=1996|volume=118|issue=9|pages=2217–2225|doi=10.1021/ja953029p}}</ref> the [[monomer]] and [[dimer (chemistry)|dimer]] are prevalent. In the monomeric and dimeric state, one or two solvent molecules bind to lithium centers. With ammonia as donor base lithium bis(trimethylsilyl)amide forms a trisolvated monomer that is stabilized by intermolecular hydrogen bonds.<ref>{{cite journal|author1=Neufeld, R.|author2=Michel, R. |author3=Herbst-Irmer, R. |author4=Schöne, R. |author5=Stalke, D. |journal=[[Chem. Eur. J.]]|year=2016| volume=22|pages=12340–12346|title=Introducing a Hydrogen-Bond Donor into a Weakly Nucleophilic Brønsted Base: Alkali Metal Hexamethyldisilazides (MHMDS, M = Li, Na, K, Rb and Cs) with Ammonia |issue=35 |doi=10.1002/chem.201600833 |pmid=27457218}}</ref><ref>Neufeld, R.: [https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-0028-8713-A/Roman_Neufeld_Diss-ECC-MW-Determination.pdf?sequence=1 ''DOSY External Calibration Curve Molecular Weight Determination as a Valuable Methodology in Characterizing Reactive Intermediates in Solution.''] In: ''eDiss, Georg-August-Universität Göttingen.'' 2016.</ref> In noncoordinating solvents, such as [[aromatic]]s or [[pentane]], the complex [[oligomers]] predominate, including the trimer.<ref name=Lucht1996 /> In the solid state structure is trimeric.<ref>{{cite journal | title = The crystal structure of ''N''-lithiohexamethyldisilazane, [LiN(SiMe<sub>3</sub>)<sub>2</sub>]<sub>3</sub> | first1 = Robin D. | last1 = Rogers | first2 = Jerry L. | last2 = Atwood | first3 = Rainer | last3 = Grüning | journal = [[J. Organomet. Chem.]] | volume = 157 | issue = 2 | year = 1978 | pages = 229–237 | doi = 10.1016/S0022-328X(00)92291-5}}</ref> |
|||
{|align="center" border="0" width="810" |
|||
|- |
|||
|colspan="5" align="right"|[[File:LiHMDS aggregation.png|750px]] |
|||
|- |
|||
|width="250" align="center"|[[File:LiHMDS-tmeda complex.png|175px]]<br>LiHMDS adduct with [[TMEDA]] |
|||
|width="30"| |
|||
|width="250" align="center"|[[File:Li2(Sitms2)2(THF)2.png|200px]]<br>[[THF]] solvated dimer: {{chem2|[(LiHMDS)2(THF)2]}} |
|||
|width="30"| |
|||
|width="250" align="right"|[[File:The real "Li N(Sitms2 )2".png|200px]]<br>Trimer, solvent free: {{chem2|[(LiHMDS)3]}} |
|||
|} |
|||
==See also== |
==See also== |
||
*[[Lithium amide]] |
|||
* [[Metal bis(trimethylsilyl)amides]] |
|||
*[[Lithium diisopropylamide]] |
|||
*[[Lithium tetramethylpiperidide]] |
|||
==References== |
==References== |
||
<references/> |
<references/> |
||
{{Lithium compounds}} |
|||
[[Category:Reagents for organic chemistry]] |
|||
[[Category:Lithium compounds]] |
|||
[[Category:Organosilicon compounds]] |
|||
[[Category:Bis(trimethylsilyl)amides]] |
[[Category:Bis(trimethylsilyl)amides]] |
||
[[Category:Lithium compounds]] |
|||
[[Category:Non-nucleophilic bases]] |
|||
[[id:Litium bis(trimetilsilil)amida]] |
|||
[[Category:Organolithium compounds]] |
|||
[[nl:Lithiumbis(trimethylsilyl)amide]] |
|||
[[Category:Reagents for organic chemistry]] |
|||
[[zh:二(三甲基硅基)氨基锂]] |