跳转到内容

形式幂级数

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自形式冪級數

形式幂级数(formal power series)是一个数学中的抽象概念,是从幂级数中抽离出来的代数对象。形式幂级数和从多项式中剥离出来的多项式环类似,不过允许(可数)无穷多项因子相加,但不像幂级数一般要求研究是否收敛和是否有确定的取值。形式幂级数在代数和组合理论中有广泛应用。

简介

[编辑]

形式幂级数和多项式的形式定义有类似之处。对于熟悉幂级数的读者,也可以将其看作是不讨论幂级数敛散性,也就是将其中的不定元仅仅看作是一个代数对象,而不是任何具体数值的时候写出的幂级数。举例来说,以下的级数式子:

如果我们把它当成幂级数来研究的话,重点会放在它的收敛半径等于1、其对应的幂级数函数是否满足某些性质等等。但作为形式幂级数来研究时,我们关注的是它本身的结构。我们甚至可以把它简写为:这样,只关注它的系数。我们完全可以考虑各种系数的形式幂级数。比如说系数为阶乘的形式幂级数:,即使说它对应的幂级数:

取任何的非零实数值时都不收敛,我们仍然可以将其作为形式幂级数进行运算。

和多项式环中的元素一样,形式幂级数之间也可以做加减和乘法的运算,具体的计算方式和多项式环一样。比如说设:

那么的和就是:

其中里面的系数就是的系数的和;里面的系数就是的阶数相加等于5的项的系数乘积的和:

对每个确定的阶数,这个计算是有限项(至多项)的相加,所以在计算形式幂级数的加减法和乘法的时候,不需要像在对幂级数进行计算时一样,考虑诸如是否绝对收敛、条件收敛或是一致收敛的问题。另外,如多项式的形式运算一样,形式幂级数也满足加法的交换律、加法的结合律、乘法的交换律、乘法的结合律以及乘法对加法的分配律。

形式幂级数不仅能够定义乘法,也能定义乘法逆的运算。一个形式幂级数的逆是指另一个形式幂级数,使得. 如果这样的形式幂级数存在,就是唯一的,将其记为。同时我们也可以定义形式幂级数的除法:当的逆存在时, 比如说,可以很容易验证:

形式幂级数上的一个重要映射是系数的提取操作:将一个形式幂级数映射到它的的系数。这个操作常常记作,比如说对形式幂级数,就有:

对以上定义的形式幂级数,也有:。又比如:。提取映射和多项式环中的对应映射一样,都可以看做是到一个子空间的投影映射。

形式幂级数的环结构

[编辑]

所有的不定元为,系数为某一个交换上元素的形式幂级数构成一个环,称为上变量为的形式幂级数环,记作

定义

[编辑]

可以定义为上变量为的多项式环完备化(对于特定的度量)后得到的。这个定义自然就赋予了以拓扑环的结构(同时也赋予了完备度量空间的结构)。不过空间完备化所需要的步骤过于繁琐,而建构所需要的并没有那么多。以下将对的环结构和拓扑结构分别定义,更为明晰,容易理解。

环结构

[编辑]

首先可以定义集合的范围。作为一个集合,可以用和一样的方法构造。是所有上元素构成的数列的集合:

中的元素可以定义加法和乘法:

其中乘法的定义方法也叫做求两个数列的系数的柯西乘积,也是一种卷积。可以证明,在以上的定义下,是一个交换环。环的加法零元是,乘法幺元是。于是我们可以将中的元素嵌入到之中,

并将映射到不定元,这样通过以上定义的加法和乘法就可以将中的有限非零元元素同构为:

这样的结构和多项式环是一样的。所以对于更一般的中元素,就可以自然地希望将其对应到

但这个对应方式并不能通过有限项的加法和乘法得到,所以需要用一个约定上的映射来做到:

这个映射涵盖了之前的多项式的定义,并且可以定义

以及

这个定义使得是一个同态,所以也是一个交换环。

拓扑结构

[编辑]

以上的定义中建立了映射

但需要注意的是这里的定义中还是一个符号性的对象,因为我们并没有定义其中无限求和号的意义。为了更好地定义本身,我们需要引入拓扑的结构,将其作为极限来严格地说明。需要注意的是,适合的拓扑结构不止一个。

  • 我们可以在上定义离散拓扑的结构,然后将作为可数个积空间,将其上的拓扑定义为积拓扑
  • 我们也可以直接在上定义类似于p进数拓扑的进拓扑,其中的是环结构中由生成的理想,也就是由所有形式的形式幂级数构成的集合。
  • 对不熟悉一般的点集拓扑学的读者,也可以建立一个具体的度量(也就是定义“距离”)来定义拓扑。比如定义两个数列的距离:

其中表示数列中第一个不等于0的系数的下标。这样的定义之下,我们说两个数列如果越来越“接近”,那么第一个系数不同的地方会出现的越晚,也就是说它们的距离也越小。对一个数列,定义部分和数列为:

那么部分和的距离就会是,所以趋于无穷大的时候,部分和数列和的距离趋于0. 这样,在定义了有限项非零元的数列和多项式的关系以后,就可以将任意的数列定义为部分和数列的极限。

然后对形式幂级数也定义类似的距离:

然后形式幂级数也就满足:

并且可以验证加法、乘法的交换律和结合律,以及乘法对加法的分配律。于是我们定义出了一个同构于拓扑环,将其称为上的形式幂级数环

参考来源

[编辑]