208 (number)
Appearance
| ||||
---|---|---|---|---|
Cardinal | two hundred eight | |||
Ordinal | 208th (two hundred eighth) | |||
Factorization | 24 × 13 | |||
Greek numeral | ΣΗ´ | |||
Roman numeral | CCVIII, ccviii | |||
Binary | 110100002 | |||
Ternary | 212013 | |||
Senary | 5446 | |||
Octal | 3208 | |||
Duodecimal | 15412 | |||
Hexadecimal | D016 |
208 (two hundred [and] eight) is the natural number following 207 and preceding 209.
208 is a practical number,[1] a tetranacci number,[2][3] a rhombic matchstick number,[4] a happy number, and a member of Aronson's sequence.[5] There are exactly 208 five-bead necklaces drawn from a set of beads with four colors,[6] and 208 generalized weak orders on three labeled points.[7][8]
References
[edit]- ^ Sloane, N. J. A. (ed.). "Sequence A005153 (Practical numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000078 (Tetranacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Waddill, Marcellus E. (1992), "The Tetranacci sequence and generalizations" (PDF), The Fibonacci Quarterly, 30 (1): 9–20, doi:10.1080/00150517.1992.12429379, MR 1146535.
- ^ Sloane, N. J. A. (ed.). "Sequence A045944 (Rhombic matchstick numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005224 (T is the first, fourth, eleventh, ... letter in this sentence, not counting spaces or commas (Aronson's sequence))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001868 (Number of n-bead necklaces with 4 colors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A004121 (Generalized weak orders on n points)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Wagner, Carl G. (1982), "Enumeration of generalized weak orders", Archiv der Mathematik, 39 (2): 147–152, doi:10.1007/BF01899195, MR 0675654, S2CID 8263031.