Nombre harshad
En mathématiques récréatives, un nombre harshad, ou nombre de Niven, est un entier naturel qui est divisible par la somme de ses chiffres dans une base donnée. En base b, tous les nombres de 0 à b et toutes les puissances de b sont des nombres harshad, mais ils suivent ensuite une répartition similaire à celle des nombres premiers.
Historique
[modifier | modifier le code]Ils semblerait que ces nombres aient été considérés pour la première fois par le mathématicien indien D. R. Kaprekar dans un texte de 1955 sous le nom de "multidigital numbers" [1] . L'appellation harshad, qui signifie grande joie en sanskrit, leur a été donnée par la suite. L'appellation « de Niven » est un hommage au mathématicien Ivan Niven qui a publié un article et présenté une conférence en théorie des nombres sur leur sujet en 1977.
.
Nombre harshad en base dix
[modifier | modifier le code]En base dix, les vingt premiers nombres harshad strictement supérieurs à 10 sont (suite A005349 de l'OEIS) :
Les quotients obtenus se trouvent dans la suite A113315 de l'OEIS.
Quels nombres peuvent être des nombres harshad ?
[modifier | modifier le code]Les multiples de 9 à deux chiffres jusqu'à 90 sont des nombres harshad puisque la somme de leurs chiffres est égale à 9, mais 99 n'en est pas un, puisque 9 + 9 = 18 et 99 n'est pas divisible par 18.
Aucun nombre premier p strictement supérieur à 10 n'est harshad. En effet, la somme de ses chiffres est strictement comprise entre 1 et p donc ne peut pas diviser p.
En base dix, les factorielles des nombres entiers inférieurs ou égaux à 431 sont des nombres harshad. Le nombre 432! est la première factorielle à ne pas être un nombre harshad[2]. En voici quelques autres : 444!, 453!, 458!, 474!, 476!, 485!, 489!.
Tout entier > 0 est-il la somme des chiffres d'un nombre harshad ?
[modifier | modifier le code]Dans son article[1], Kaprekar semble admettre cette propriété comme évidente. Elle est en effet exacte, et démontrée par exemple dans[3] en utilisant le théorème d'Euler.
Voici quelques couples où est le plus petit harshad ayant pour somme des chiffres :
La suite est la suite A002998 de l'OEIS.
Nombres harshad consécutifs
[modifier | modifier le code]Cooper et Kennedy ont démontré[4],[5] qu'en base dix, il existe 20 entiers consécutifs (dépassant 1044 363 342 786) qui sont tous des nombres harshad, mais qu'il n'en existe pas 21.
Estimation de la densité des nombres harshad
[modifier | modifier le code]Si l'on note le nombre de nombres harshad inférieurs ou égaux à , alors[6]
Cette constante est répertoriée comme suite A086705 de l'OEIS.
Par conséquent, : les nombres harshad sont de densité asymptotique nulle.
Nombre harshad dans d'autres bases
[modifier | modifier le code]Un nombre harshad en base b est souvent appelé un nombre b-harshad (notation de Grundman 1994).
En base b comme en base dix, on a :
- tous les entiers de 0 jusqu'à b sont des nombres b-harshad ;
- aucun nombre premier strictement supérieur à b n'est b-harshad ;
- il existe une infinité de suites de 2b nombres b-harshad consécutifs, pour b = 2 et pour b = 3 (ces deux résultats ont été prouvés par T. Tony Cai (en) en 1996).
- Il existe une constante telle que ()[7].
Nombre complètement harshad
[modifier | modifier le code]Un entier qui est un nombre harshad dans toute base est dit complètement harshad (ou complètement de Niven) ; il existe seulement quatre nombres complètement harshad, 1, 2, 4 et 6.
Notes et références
[modifier | modifier le code]- (en) D. R. Kaprekar, « Multidigital Numbers », Scripta Mathematica, vol. 21, , p. 27
- (en) Richard Mollin, Number Theory : Proceedings of the First Conference of the Canadian Number Theory Association held at the Banff Center, Banff, Alberta, April 17–27, 1988, Waltre de Gruyter, (présentation en ligne), p=630
- Mohammed Aassila, 1000 challenges mathématiques, Algèbre, Ellipses, , p. 110
- (en) Curtis Cooper et Robert E. Kennedy, « On consecutive Niven numbers », Fibonacci Quart., vol. 31, no 2, , p. 146-151 (zbMATH 0776.11003, lire en ligne).
- (en) Helen G. Grundman, « Sequences of consecutive Niven numbers », Fibonacci Quart., vol. 32, , p. 174-175 (lire en ligne).
- (en) Jean-Marie De Koninck, Nicolas Doyon et Imre Katái , « On the counting function for the Niven numbers », Acta Arithmetica, vol. 106, no 3, , 265-275 (DOI 10.4064/aa106-3-5, lire en ligne)
- Nicolas Doyon, « Les fascinants nombres de Niven », Thèse de la faculté des sciences et de génie de l'université Laval, Québec, (lire en ligne)
Lien externe
[modifier | modifier le code](en) Eric W. Weisstein, « Harshad number », sur MathWorld