Electricity: Difference between revisions
Jim.henderson (talk | changes) Undid revision 5582228 by 78.40.232.73 (talk) |
No edit summary |
||
Line 7: | Line 7: | ||
Since the nineteenth century, electricity has been used in every part of our lives. Until then, it was just a curiosity seen in a [[thunderstorm]]. |
Since the nineteenth century, electricity has been used in every part of our lives. Until then, it was just a curiosity seen in a [[thunderstorm]]. |
||
We can make electricity if we pass a [[magnet]] close to a metal wire. This is a [[generator]], which is the main way. The biggest generators are in [[power station]]s. We can put the right [[chemicals]] in a jar with two different kinds of [[metal]] rods. This is a [[battery]], often used for portable machines. We can also make [[static electricity]] by rubbing two things - for instance a wool cap and a plastic ruler, together. This may make a [[spark]]. Some of our electricity comes from [[photovoltaic]] cells. |
We can make electricity if we pass a [[magnet]] close to a metal wire. This bitch is a [[generator]], which is the main way. The biggest generators are in [[power station]]s. We can put the right [[chemicals]] in a jar with two different kinds of [[metal]] rods. This is a [[battery]], often used for portable machines. We can also make [[static electricity]] by rubbing two things - for instance a wool cap and a plastic ruler, together. This may make a [[spark]]. Some of our electricity comes from [[photovoltaic]] cells. |
||
Electricity arrives at homes through [[wire]]s from the places where it is made. It is used by [[electric lamp]]s, electric [[heating|heater]]s, etc. Many [[appliance]]s such as [[washing machine]]s and electric cookers use electricity. In factories, electricity powers [[machine]]s. People who deal with electricity and electrical devices in our homes and factories are called "[[electrician]]s". |
Electricity arrives at homes through [[wire]]s from the places where it is made. It is used by [[electric lamp]]s, electric [[heating|heater]]s, etc. Many [[appliance]]s such as [[washing machine]]s and electric cookers use electricity. In factories, electricity powers [[machine]]s. People who deal with electricity and electrical devices in our homes and factories are called "[[electrician]]s". |
Revision as of 15:45, 7 February 2017
Electricity is the presence and flow of electric charge.[1] Its best-known form is the flow of electrons through conductors such as copper wires.
Electricity is a form of energy that comes in positive and negative forms, that occur naturally (as in lightning), or is produced (as in a generator). It is a form of energy which we use to power machines and electrical devices. When the charges are not moving, electricity is called static electricity. When the charges are moving they are an electric current, sometimes called 'dynamic electricity'. Lightning is the most known - and dangerous - kind of electricity in nature, but sometimes static electricity causes things to stick together. Electricity can be dangerous, especially around water.
Static electricity occurs when there are fewer or more electrons for the atoms. If the electrons stay where they are, the atom that has too many or too few electrons will attract or sometimes repel other atoms. If the electrons move from where there are too many, to where there are too few, an electric current will flow.
Since the nineteenth century, electricity has been used in every part of our lives. Until then, it was just a curiosity seen in a thunderstorm.
We can make electricity if we pass a magnet close to a metal wire. This bitch is a generator, which is the main way. The biggest generators are in power stations. We can put the right chemicals in a jar with two different kinds of metal rods. This is a battery, often used for portable machines. We can also make static electricity by rubbing two things - for instance a wool cap and a plastic ruler, together. This may make a spark. Some of our electricity comes from photovoltaic cells.
Electricity arrives at homes through wires from the places where it is made. It is used by electric lamps, electric heaters, etc. Many appliances such as washing machines and electric cookers use electricity. In factories, electricity powers machines. People who deal with electricity and electrical devices in our homes and factories are called "electricians".
Electricity in physics
Electromagnetism |
---|
Electricity · Magnetism · Magnetic permeability |
Electricity works because electric charges push and pull on each other. There are two types of electric charges: positive charges and negative charges. Similar charges repel each other. This means that if you put two positive charges close together and let them go, they would move apart. Two negative charges also repel. But different charges attract each other. This means that if you put a positive charge and a negative charge close together, they would smack together. A short way to remember this is the phrase opposites attract, likes repel.
Electric charges push or pull on each other if they are not touching. This is possible because each charge makes an electric field around itself. An electric field is an area that surrounds a charge. At each point near a charge, the electric field points in a certain direction. If a positive charge is put at that point, it will be pushed in that direction. If a negative charge is put at that point, it will be pushed in the exact opposite direction.
All the matter in the world is made of tiny positive and negative charges. The positive charges are called protons, and the negative charges are called electrons. Protons are much bigger and heavier than electrons, but they both have the same amount of electric charge, except that protons are positive and electrons are negative. Because "opposites attract," protons and electrons stick together. A few protons and electrons can form bigger particles called atoms and molecules. Atoms and molecules are still very tiny. It is impossible to see them without a very powerful microscope. Any big object, like your body, has more atoms and molecules in it than anyone could count.
Because negative electrons and positive protons stick together to make big objects, all big objects that we can see and feel are electrically neutral. Electrically is a word meaning "describing electricity", and neutral is a word meaning "balanced." That is why we do not feel objects pushing and pulling on us from a distance, like they would if everything was electrically charged. All big objects are electrically neutral because there is exactly the same amount of positive and negative charge in the world. We could say that the world is exactly balanced, or neutral. This seems very surprising and lucky. Scientists still do not know why this is so, even though they have been studying electricity for a long time.
Electric current
In some materials, electrons are stuck tightly in place, while in other materials, electrons can move all around the material. Protons never move around a solid object because they are so heavy, at least compared to the electrons. A material that lets electrons move around is called a conductor. A material that keeps each electron tightly in place is called an insulator. Examples of conductors are copper, aluminum, silver, and gold. Examples of insulators are rubber, plastic, and wood. Copper is used very often as a conductor because it is a very good conductor and there is so much of it in the world. Copper is found in electrical wires. But sometimes, other materials are used.
Inside a conductor, electrons bounce around, but they do not keep going in one direction for long. If an electric field is set up inside the conductor, the electrons will all start to move in the direction opposite to the direction the field is pointing (because electrons are negatively charged). A battery can make an electric field inside a conductor. If both ends of a piece of wire are connected to the two ends of a battery (called the electrodes), the loop that was made is called an electrical circuit. Electrons will flow around and around the circuit as long as the battery is making an electric field inside the wire. This flow of electrons around the circuit is called electric current.
A conducting wire used to carry electric current is often wrapped in an insulator such as rubber. This is because wires that carry current are very dangerous. If a person or an animal touched a bare wire carrying current, they could get hurt or even die depending on how strong the current was. You should be careful around electrical sockets and bare wires that might be carrying current.
It is possible to connect an electrical device to a circuit so that electrical current will flow through a device. This current will make the device do something that we want it to do. Electrical devices can be very simple. For example, in a light bulb, current flows through a special wire called a filament, which makes it glow. Electrical devices can also be very complicated. Electricity can be used to drive an electric motor inside a tool like a drill or a pencil sharpener. Electricity is also used to power modern electronic devices, including telephones, computers, and televisions.
Some terms related to electricity
- Electric current is when electric charge flows. When 1 coulomb of electricity moves past somewhere in 1 second, the current is 1 ampere.
- Electric voltage is the "push" behind the current. It is the amount of work per electric charge that an electric source can do. When 1 coulomb of electricity has 1 joule of energy, it will have 1 volt of electric potential.
- Electrical resistance is the ability of a substance to resist the flowing of the current, i.e. to reduce the amount of current that flows through the substance. If an electric voltage of 1 volt maintains a current of 1 ampere through a wire, the resistance of the wire is 1 ohm. When the flow of current is opposed (resisted) energy gets used or gets converted to other forms (e.g. heat, etc.).
- Electric energy is the ability to do work by means of electric devices. Electric energy is a "conserved" property, meaning that it behaves like a substance and can be moved from place to place. Electric energy is measured in joules or kilowatt-hours (kW h).
- Electric power is the rate at which electric energy is being used, stored, or transferred. Flows of electrical energy along power lines are measured in watts. If the electric energy is being converted to another form of energy, it is measured in watts. If it is stored (as in electric or magnetic fields), it is measured in volt-amperes reactive. If some of it is converted and some of it is stored, it is measured in volt-amperes.
Generating electricity
Electricity is mostly generated in places called power stations. Most power stations use heat to boil water into steam which turns a steam engine. The steam engine's turbine turns a machine called a 'generator'. Generators have wires inside which spin inside a magnetic field. Electromagnetic induction causes electricity to flow through the wires. Michael Faraday discovered how to do this.
There are many sources of heat which can be used to generate electricity. Heat sources can be classified into two types: renewable energy resources in which the supply of heat energy never runs out and non-renewable energy resources in which the supply will be eventually used up.
Sometimes a natural flow, such as wind power or water power, can be used directly to turn a generator so no heat is needed.
References
- ↑ "Full Definition of electricity". Merriam-Webster Dictionary. Merriam-Webster. 01/12/2016. Retrieved http://www.merriam-webster.com/dictionary/electricity.
{{cite web}}
: Check date values in:|accessdate=
and|date=
(help); External link in
(help)|accessdate=