Модулярна форма — голоморфна функція визначена на верхній комплексній півплощині (тобто множині ), що є інваріантною щодо перетворень модулярної групи чи деякої її підгрупи і задовольняє умові голоморфності в параболічних точках. Модулярні форми і модулярні функції широко використовуються в теорії чисел, а також в алгебраїчній топології і теорії струн.
Нехай — квадратна матриця порядку 2 з цілочисельними елементами і визначником рівним одиниці. Для деякого визначимо функцію .
Також позначимо:
Дані групи називаються головними конгруентними підгрупами рівня N. Також використовується позначення . Довільна група називається конгруентною. Нехай — деякий елемент конгруентної групи. Якщо (де — слід матриці) то цей елемент називається параболічним, а відповідне перетворення параболічним. Точка називається параболічною, якщо існує параболічний елемент , такий що .
Нехай — деяка конгруентна група. Функція f визначена на називається модулярною формою степеня (ваги) k для групи , якщо виконуються умови:
- ;
- — голоморфна в ;
- голоморфна в параболічних точках групи .
Нехай — деяка конгруентна група. Функція f визначена на називається модулярною функцією для групи , якщо виконуються умови:
- є інваріантною щодо дії групи , тобто ;
- — мероморфна в ;
- — мероморфна в параболічних точках групи .
Випадок групи
[ред. | ред. код]
Модулярна група породжується двома матрицями і
. Тож для перевірки виконання перших умов визначень модулярних функцій і форм достатньо перевірити виконання умов і .
Параболічними точками даної групи є точки і всі вони є еквівалентними, тобто існує такий , що . Тож достатньо перевірити голоморфність чи мероморфність лише в одній з цих точок. Найзручніше для цього взяти . Завдяки властивості функція f(z) може бути записана через ряд Фур'є через .
Оскільки на всій комплексній площині не рівний нулю то також але, коли (по від'ємній дійсній осі), отже коли , тобто коли (по додатній уявній осі).
Функція є мероморфною в безмежності якщо:
на всьому відкритому одиничному крузі.
Коефіцієнти — коефіцієнти Фур'є функції ,
Якщо при на всьому відкритому одиничному крузі то функція є голоморфною в безмежності.
Для модулярну форму можна також означити, як однорідну голоморфну функцію F на множині ґраток в .
Тут ґратка - це підгрупа в , породжена двома числами , , які утворюють базу над .
Однорідність F означає, що існує ціле , таке, що для всіх і всіх ґраток .
Досить обмежитись парною вагою k, інакше .
За допомогою гомотетії можна зробити, щоб , а було параметром ґратки.
Функція , має автоморфну властивість, еквівалентну однорідності F.
Голоморфність F означає голоморфність f і поліноміальну обмеженість росту f поблизу межі .
З обмеженості випливає, що при і при .
Якщо — деяка підгрупа зі скінченним індексом групи , то множина параболічних точок теж рівна , але в цьому випадку вони можуть не бути еквівалентними, тож умови голоморфності і мероморфності слід перевіряти окремо для кожного класу еквівалентності.
Для точки стабілізатор породжується деякою матрицею . Оскільки f(z) інваріантна відносно , то . Тому якщо визначити то можна дати ознаки мероморфності і голоморфності подібні до попередніх.
функція є мероморфною в безмежності якщо:
на всьому відкритому одиничному крузі.
Коефіцієнти — коефіцієнти Фур'є функції ,
Якщо при на всьому відкритому одиничному крузі то функція є голоморфною в безмежності.
Якщо точка не є еквівалентна безмежності в групі , тоді можна знайти такий , що . Тоді функція є інваріантною щодо групи . Тоді буде голоморфною (мероморфною) в точці , якщо буде голоморфною (мероморфною) в безмежності.
Для говоримо про модулярні форми рівня N.
Модулярні форми ваги k і рівня утворюють скінченновимірний простір (нульовий при ) і градуйована алгебра скінченнопороджена над .
Наприклад, для непарних k, а для парних k при і інакше.
Більш загально, якщо - дискретна підгрупа , і має скінченний гіперболічний об'єм V (стосовно 2-форми ), то для всіх .
Зокрема, для підгрупи, що містить -1, , скінченного індексу r, .
- Одними з найпростіших прикладів модулярних форм є ряди Ейзенштейна ваги , що визначаються для парного :
де .
- — модулярні інваріанти, — модулярний дискримінант.
Визначимо також:
- — основний модулярний інваріант (j-інваріант).
Виконуються рівності:
Також дані функції задовольняють відповідні властивості голоморфності. Тобто — модулярна форма ваги 4, — модулярна форма ваги 12. Відповідно — модулярна форма ваги 12, а — модулярна функція. Дані функції мають важливе застосування в теорії еліптичних функцій і еліптичних кривих.
При дії групи з вагою на голоморфних функціях , , ,
стабілізатор точки 1 (постійної функції) при парному k - це матриці з , .
При дії цей стабілізатор є .
Множина класів суміжності перебуває в бієкції з нсд.
Ряд Айзенштайна
абсолютно збігається при і є нерухомою точкою дії , тобто модулярною формою ваги k рівня 1.
Комутативне кільце .
Безпосередньо однорідну функцію від ґратки можна написати як , .
Звуження її на ґратки , , дає модулярну форму ваги k рівня 1
втім, .
Використовуючи ще одну нормалізацію , знаходимо розвинення її в ряд Фур'є від :
, де — число Бернуллі і .
Нехай — тета-функція Якобі, .
Тоді — модулярна форма ваги 1 рівня 4.
З одновимірності певного простору модулярних форм випливає, що число представлень цілого як суми квадратів двох цілих чисел є .
З того, що - модулярна форма ваги 2 рівня 4 виводиться: число представлень цілого як суми квадратів чотирьох цілих чисел є .
Узагальнюючи, розглянемо додатно визначену квадратичну форму , , де - симетрична додатно визначена матриця з парними діагональними елементами.
З нею асоціюється тета-ряд
де і .
Нехай N — найменше додатне ціле, таке, що має парні діагональні елементи.
Тоді для , , функція є модулярною формою ваги k рівня N.
Зокрема, для , є модулярною формою ваги k рівня 1.
Наприклад, це вірно для ґратки () або ґратки Лича ().
На просторі модулярних форм ваги k рівня 1 діє оператор Геке , .
Він переводить однорідну функцію F степеня -k від ґратки в суму , де пробігає підґратки індексу m.
Константа нормалізації вибрана так, щоби ряди з цілими коефіцієнтами Фур'є переходили в такі ж.
Скінченна множина ґраток індексу m ототожнюється з множиною , де - множина матриць з визначником m.
Тому
За представників класів суміжності можна обрати цілочисельні матриці з , .
Тому
Всі оператори комутують і є нормальними відносно скалярного добутку Петерсона, тож має базу спільних власних векторів (Геке).
Ці вектори f можна нормалізувати умовою для і нормалізований власний базис є єдиним.
Прикладами нормалізованих власних функцій слугують і , .
З кожною модулярною формою ваги k пов'язується ряд Діріхле .
Якщо f - нормалізована власна функція Геке, то
де p пробігає прості числа.
Для довільної модулярної форми f з ряд Діріхле продовжується до цілої функції від s і задовольняє функціональному рівнянню , де - теж ціла функція.
З гіпотези Шимури — Таніями — Вейля, доведеної Вайлсом, Тейлором, Брейлем, Конрадом, Даймондом наприкінці двадцятого століття (кожна еліптична крива над може бути параметризована модулярними функціями) випливає (Рібет) велика теорема Ферма: для не існує додатних цілих a, b, c з .
- Сарнак П. Модулярные формы и их приложения, М: ФАЗИС, 1998. ISBN 5-70364029-4
- Tom M. Apostol, Modular functions and Dirichlet Series in Number Theory (1990), Springer-Verlag, New York. ISBN 0-387-97127-0
- Robert A. Rankin, Modular forms and functions, (1977) Cambridge University Press, Cambridge. ISBN 0-521-21212-X
- D. Mumford, Tata lectures on theta. I, Progress in Mathematics, vol. 28, Birkhäuser Boston, MA, 1983.
- Ю.И. Манин, А.А. Панчишкин, Введение в современную теорию чисел, Москва, МЦНМО, 2009.
- Енциклопедія Сучасної України