Подвійний бета-розпад
Подві́йний бе́та-ро́зпад, 2β-розпад, ββ-розпад — загальна назва декількох видів радіоактивного розпаду атомного ядра, які зумовлені слабкою взаємодією та змінюють заряд ядра на дві одиниці. Подвійний бета-розпад у власному значенні слова супроводжується збільшенням заряду ядра на дві одиниці й випромінюванням двох електронів:
Інші види 2β-розпаду зменшують заряд ядра на дві одиниці:
- подвійне електронне захоплення, 2ε-захоплення
- електронне захоплення з емісією позитрона εβ+-розпад
- подвійний позитронний розпад, 2β+-розпад
Вперше подвійний бета-розпад було розглянуто Марією Гепперт-Маєр 1935 року. Вона розробила теорію процесу на основі робіт Енріко Фермі, в яких було сформульовано закономірності взаємодії нуклонів. Марія Гепперт-Маєр оцінила ймовірність процесу для ядер з найбільшими енергіями 2β-переходу й дійшла висновку, що періоди напіврозпаду ядер відносно подвійного бета-розпаду значно перевищують геологічний вік Землі[1].
Подвійний бета-розпад — найрідкісніший з усіх процесів радіоактивного розпаду. Усі 11 нуклідів, для яких цей процес достеменно спостерігався, мають період напіврозпаду більше 1019 років, а період напіврозпаду 128Te) становить 2×1024 років — це найдовший період серед усіх радіоактивних ізотопів[2]. Слід зазначити, що підтверджені спостереження належать лише до 2β-розпаду зі збільшенням заряду ядра.
Розпад може відбуватися не тільки в основний стан дочірнього ядра, а й у збуджені стани (такий процес спостерігається в ядрах 100Mo і 150Nd). У цьому випадку випромінюється також один або декілька гамма-квантів і/або конверсійних електронів.
На відміну від наведених вище процесів (що належать до двонейтринного 2ν2β-розпаду), безнейтринний 0ν2β-розпад не супроводжується емісією нейтрино або антинейтрино. У результаті такого 0ν2β-розпаду лептонне число не зберігається (змінюється на дві одиниці). Хоча Стандартна Модель фізики елементарних частинок забороняє процеси з порушенням закону збереження лептонного числа, багато розширень СМ включають процеси такого роду. Доведено, що для здійснення безнейтринного 2β-розпаду необхідно, щоб нейтрино було масивною майоранівською частинкою (тобто було власною античастинкою)[3].
Завдяки цій обставині, 0ν2β-розпад є чутливим індикатором майоранівської маси нейтрино. Станом на 2016 рік не існує достовірних спостережень безнейтринних 2β-процесів, проте нижні обмеження на період напіврозпаду за цим каналом для різних ядер досягають 1025 — 1026 років[4]. Це відповідає верхньому обмеженню на ефективну масу нейтрино Майорани близько 0,04 — 0,5 еВ. Крім того, обмеження на ймовірність безнейтринного 2β-розпаду дозволяють встановити обмеження на інші параметри теорії, наприклад на константи зв'язку правих лептонних і кваркових струмів у слабкій взаємодії, константи зв'язку нейтрино з майороном, деякі параметри суперсиметричних моделей.
У даний час у світі діють, споруджуються або розробляються близько десятка великих підземних детекторів, призначених для пошуку безнейтринного подвійного бета-розпаду: SuperNEMO, GERDA, CUORE, MAJORANA, EXO, CANDLES, SNO+, KamLAND-Zen, AMoRE, CUPID та інші.
В Україні дослідження подвійного бета-розпаду ведуться у відділі фізики лептонів Інституту ядерних досліджень Національної академії наук України.
- ↑ Goeppert-Mayer, M. (15 вересня 1935). Double Beta-Disintegration. Physical Review. Т. 48, № 6. с. 512—516. doi:10.1103/PhysRev.48.512. Процитовано 6 квітня 2016.
- ↑ Takaoka, Nobuo; Motomura, Yoshinobu; Nagao, Keisuke (1 квітня 1996). Half-life of 130Te double-β decay measured with geologically qualified samples. Physical Review C. Т. 53, № 4. с. 1557—1561. doi:10.1103/PhysRevC.53.1557. Процитовано 6 квітня 2016.
- ↑ A. Franklin, Are There Really Neutrinos?: An Evidential History (Westview Press, 2004), p. 186
- ↑ A. Barabash, Double Beta Decay Experiments: Recent Achievements and Future Prospects, Universe 9 (2023) 290, https://doi.org/10.3390/universe9060290.
Ця стаття недостатньо ілюстрована. |