Шестнадцатая проблема Гильберта
Шестна́дцатая пробле́ма Ги́льберта — одна из 23 задач, которые Давид Гильберт предложил 8 августа 1900 года на II Международном конгрессе математиков.
Исходно, проблема называлась «Проблема топологии алгебраических кривых и поверхностей» (нем. Problem der Topologie algebraischer Kurven und Flächen).
Сейчас она считается разделяющейся на две похожие проблемы в разных областях математики:
- Исследование взаимного расположения овалов вещественных алгебраических кривых степени n (и аналогичный вопрос для алгебраических поверхностей).
- Получение верхней оценки на число предельных циклов полиномиального векторного поля степени n (и исследование их взаимного расположения).
Исходная постановка
[править | править код]Первая (алгебраическая) часть
[править | править код]
Максимальное число замкнутых и отдельно расположенных ветвей, которые может иметь алгебраическая кривая n-го порядка, было определено Гарнаком {Math. Ann., 10 (1876), 189—192}. <...> Мне представляется интересным основательное изучение взаимного расположения максимального числа отдельных ветвей, так же, как и соответствующее исследование о числе, характере и расположении отдельных полостей алгебраической поверхности в пространстве; ведь до сих пор не установлено, каково в действительности максимальное число полостей поверхности четвёртой степени в трёхмерном пространстве.[1].
Оригинальный текст (нем.)16. Problem der Topologie algebraischer Curven und Flächen. Die Maximalzahl der geschlossenen und getrennt liegenden Züge, welche eine ebene algebraische Curve n-ter Ordnung haben kann, ist von Harnack {Mathematische Annalen, Bd. 10} bestimmt worden; es entsteht die weitere Frage nach der gegenseitigen Lage der Curvenzüge in der Ebene. Was die Curven 6ter Ordnung angeht, so habe ich mich — freilich auf einem recht umständlichen Wege — davon überzeugt, daß die 11 Züge, die sie nach Harnack haben kann, keinesfalls sämtlich außerhalb von einander verlaufen dürfen, sondern daß ein Zug existiren muß, in dessen Innerem ein Zug und in dessen Aeußerem neun Züge verlaufen oder umgekehrt. Eine gründliche Untersuchung der gegenseitigen Lage bei der Maximalzahl von getrennten Zügen scheint mir ebenso sehr von Interesse zu sein, wie die entsprechende Untersuchung über die Anzahl, Gestalt und Lage der Mäntel einer algebraischen Fläche im Raume — ist doch bisher noch nicht einmal bekannt, wieviel Mäntel eine Fläche 4ter Ordnung des dreidimensionalen Raumes im Maximum wirklich besitzt. {Vgl. Rohn, Flächen vierter Ordnung, Preisschriften der Fürstlich Jablonowskischen Gesellschaft, Leipzig 1886}[2].
Вторая (дифференциальная) часть
[править | править код]
В связи с этим чисто алгебраическим вопросом я затрону ещё один, который, как мне кажется, должен быть решён с помощью упомянутого метода непрерывного изменения коэффициентов <...>, а именно, вопрос о максимальном числе и расположении предельных циклов Пуанкаре для дифференциального уравнения первой степени вида
где X, Y — целые рациональные функции n-й степени относительно x, y, или, в однородной записи,
где X, Y, Z — целые рациональные однородные функции n-й степени относительно x, y, z, которые и нужно определять как функции параметра t.[1]
Оригинальный текст (нем.)Im Anschluß an dieses rein algebraische Problem möchte ich eine Frage aufwerfen die sich, wie mir scheint, mittelst der nämlichen Methode der continuirlichen Coefficientenänderung in Angriff nehmen läßt, und deren Beantwortung für die Topologie der durch Differentialgleichungen definirten Curvenschaaren von entsprechender Bedeutung ist — nämlich die Frage nach der Maximalzahl und Lage der Poincaréschen Grenzcykeln (cycles limites) für eine Differentialgleichung erster Ordnung und ersten Grades von der Form:
wo X, Y ganze rationale Funktionen nten Grades in x, y sind, oder in homogener Schreibweise
wo X, Y, Z ganze rationale homogene Functionen nten Grades von x, y, z bedeuten und diese als Funktionen des Parameters t zu bestimmen sind.[2]
История первой части
[править | править код]К моменту доклада Гильберта Ньютоном и Декартом были получены[3] топологические описания кривых степени 3 и 4, а доказанная Гарнаком теорема позволяла оценить число компонент связности кривой: оно не могло превосходить , где — её род.
В докладе Гильберт сообщил:
Что же касается кривых шестого порядка, то я — правда, на довольно сложном пути — убедился, что те 11 ветвей, которые получаются по Харнаку, никогда не расположены все вне друг друга; всегда существует одна ветвь, внутри которой есть ещё одна, и вне которой находятся остальные девять, или наоборот.
Однако, как было обнаружено[4] в 1970-х годах Д. А. Гудковым, также возможным является случай, когда внутри и вне одной кривой находятся по 5 овалов — случай, который Гильберт считал невозможным. Анализируя свои построения, Гудков высказал гипотезу, утверждавшую для M-кривых чётной степени 2k сравнимость по модулю 8 с числом эйлеровой характеристики множества B точек проективной плоскости, в которых многочлен, задающий кривую, положителен, при условии, что знак этого многочлена выбран так, что B ориентируемо. В частности, это объясняло, что в трёх реализующихся типах М-кривых степени 6 числа овалов внутри, 1, 5 и 9, идут через 4.
При эта гипотеза была доказана самим Гудковым. В общем случае она была доказана В. И. Арнольдом[5] в ослабленной форме сравнения по модулю 4, а затем В. А. Рохлиным[6][7] в полной общности, при рассмотрении специальным образом построенных четырёхмерных многообразий[4].
Построение различных примеров также привело О. Я. Виро к созданию техники склейки (англ. patchworking), позволяющей «склеивать из кусочков с заданным поведением» алгебраические кривые.
В 1972-1976 годах Вячеслав Харламов дал решение частного случая, касающегося количества компонент и топологии алгебраических поверхностей четвёртого порядка в трёхмереном проективном пространстве.
Этот раздел не завершён. |
История второй части
[править | править код]Индивидуальная теорема конечности
[править | править код]Первым шагом на пути к исследованию шестнадцатой проблемы Гильберта в полной общности должна была стать индивидуальная теорема конечности: полиномиальное векторное поле на плоскости имеет лишь конечное число предельных циклов. Эта теорема была опубликована в 1923 году в работе французского математика Анри Дюлака[8] и долгое время считалась доказанной.
В 1980-х годах Ю. С. Ильяшенко был обнаружен существенный пробел в доказательстве Дюлака[9][10], и вопрос индивидуальной конечности оставался открытым до 1991—92 года, когда Ильяшенко[11] и Экаль[12] одновременно и независимо, используя разные подходы, дали на него положительный ответ (изложение полного доказательства потребовало от каждого из них написания отдельной книги), см. также схему нового доказательства[13].
Этот раздел статьи ещё не написан. |
Стратегия Петровского — Ландиса
[править | править код]Квадратичные векторые поля
[править | править код]Ослабленные версии проблемы
[править | править код]Этот раздел статьи ещё не написан. |
См. также
[править | править код]Примечания
[править | править код]- ↑ 1 2 Перевод доклада Гильберта с немецкого — М. Г. Шестопал и А. В. Дорофеева, опубликован в книге Проблемы Гильберта / под ред. П. С. Александрова. — М.: Наука, 1969. — С. 39. — 240 с. — 10 700 экз. Архивировано 17 октября 2011 года. Архивированная копия . Дата обращения: 3 января 2010. Архивировано из оригинала 17 октября 2011 года.
- ↑ 1 2 David Hilbert. Vortrag, gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900 (нем.). — Текст доклада, прочитанного Гильбертом 8 августа 1900 года на II Международном конгрессе математиков в Париже. Дата обращения: 27 августа 2009. Архивировано из оригинала 17 июля 2009 года.
- ↑ В. И. Арнольд, Что такое математика? МЦНМО, 2002; с. 39.
- ↑ 1 2 В. И. Арнольд, Что такое математика? МЦНМО, 2002; с. 43.
- ↑ В. И. Арнольд, «О расположении овалов вещественных плоских алгебраических кривых, инволюциях четырёхмерных гладких многообразий и арифметике целочисленных квадратичных форм», Функц. анализ и его прил., 5:3 (1971), 1–9.
- ↑ В. А. Рохлин, «Доказательство гипотезы Гудкова», Функц. анализ и его прил., 6:2 (1972), 62–64.
- ↑ В. А. Рохлин, «Сравнения по модулю 16 в шестнадцатой проблеме Гильберта», Функц. анализ и его прил., 6:4 (1972), 58–64.
- ↑ Dulac, H. Sur les cycles limits. Bull. Soc. Math. France, 51: 45–188 (1923); // русский перевод: Дюлак А. О предельных циклах.— М.: Наука, 1980
- ↑ Ильяшенко Ю. С. О проблеме конечности числа предельных циклов полиномиальных векторных полей на плоскости.— УМН, 1982, т. 37, вып. 4, с. 127.
- ↑ Ю. С. Ильяшенко. «Мемуар Дюлака „О предельных циклах“ и смежные вопросы локальной теории дифференциальных уравнений», УМН, 40:6(246) (1985), 41-78
- ↑ Yu. Ilyashenko, Finiteness theorems for limit cycles, American Mathematical Society, Providence, RI, 1991.
- ↑ J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992.
- ↑ Ю. С. Ильяшенко. Теоремы конечности для предельных циклов: схема обновленного доказательства. Изв. РАН. Сер. матем., 80:1 (2016), 55–118 . Дата обращения: 8 сентября 2016. Архивировано 15 сентября 2016 года.
- В. И. Арнольд, Что такое математика? МЦНМО, 2002; с. 39-45.
- М. Э. Казарян, Тропическая геометрия, записки лекций.
- Ю. С. Ильяшенко, Столетняя история 16-й проблемы Гильберта. В сборнике «Глобус: Общематематический семинар. Вып. 1», М.: МЦНМО, 2004. // Centennial history of Hilbert’s 16th problem, Bull AMS, v 39, no 3, 2002, 301—354.
- Проблемы Гильберта. Сб. под ред. П. С. Александрова. М.: Наука, 1969.