본문으로 이동

당김 (미분기하학)

위키백과, 우리 모두의 백과사전.

미분기하학에서 당김(영어: pullback)이란 한 다양체 위에 정의된 공변(covariant) 텐서를 다른 다양체 위에 옮겨 정의하는 방법이다.

매끄러운 다양체 사이의 매끄러운 함수 이 주어지면, 위에 존재하는 모든 공변 텐서 (즉, 첨자가 모두 아랫첨자인 경우) 에 대하여, 위에 대응하는 텐서 를 정의할 수 있다. 이를 의 당김이라고 한다. 특히, 미분형식이나 (스칼라) 함수는 공변 텐서의 특수한 경우이므로, 이들을 다른 다양체로 당길 수 있다.

정의

[편집]

을 미분가능한 함수라고 하고, 차 공변 텐서(개의 (반변) 벡터를 받는 함수)라고 하자. 그렇다면 이 데이터로부터 위에 정의된 차 텐서 를 다음과 같이 정할 수 있다.

.

여기서 , (점 에서의 접공간), 은 점 에서 미분 사상이다.

(스칼라) 함수는 0차 공변 텐서이다. 이 경우, 함수 의 당김은 함수의 합성과 같다. 즉,

이다.

성질

[편집]

f : RnRm, g : RpRn를 미분가능한 함수, α 와 β를 Rm에서의 k-형식, γ : RmRRm에서의 0-형식이라 하자. 이 때, 다음이 성립한다.

여기서 α1, …, αkRm에서의 1-형식이고 ∧ 는 쐐기곱이다.
여기선 α 와 β 가 같은 계수를 가질 필요는 없다.

같이 보기

[편집]

참고 문헌

[편집]
  • Manfredo P. do Carmo (1994). 《Differential Forms and Applications》. Springer-Verlag.