Hoppa till innehållet

Användare:HannGust/Periodiska randvillkor

Från Wikipedia
Periodiska randvillkor i 2D
Enhetscell med vattenmolekyler, som används för att simulera flytande vatten

Periodiska randvillkor (PRV) är en uppsättning randvillkor som ofta används för att approximera ett stort (oändligt) system genom att utgå från en liten del som kallas en enhetscell. PRV används ofta i datorsimuleringar och matematiska modeller. Topologin för tvådimensionella PRV är lika med den för en världskarta i vissa videospel; när ett föremål passerar genom ena sidan av enhetscellen dyker det upp igen på den motsatta sidan med samma hastighet, och enhetscellens geometri är sådan att oändligt många enhetsceller kan placeras sida vid sida så att de täcker hela det Euklidiska planet utan att överlappa. I topologiska termer kan rummet som skapas av tvådimensionella PRV ses som avbildat på en torus ( kompaktifiering ). De stora system som approximeras av PRV består av ett oändligt antal enhetsceller. I datorsimuleringar är en av dessa den ursprungliga simuleringscellen, och alla andra är kopior (periodiska avbildningar) av denna. Under simuleringen behöver endast egenskaperna för den ursprungliga simuleringscellen bokföras och propageras. En vanlig form av partikelbokföring vid användning av PRV kallas på engelska minimum-image convention, där varje enskild partikel i simuleringen enbart interagerar med den närmaste kopian av varje övrig partikel i systemet.

Ett exempel på periodiska randvillkor för glatta reella funktioner är

för alla m = 0, 1, 2, ... och för konstanter och , . Dessa säger att funktionen och dess derivator antar samma värden på motsatta sidor av hyperrektangeln .

I molekyldynamiksimuleringar och molekylmodellering med Monte Carlo används PRV vanligtvis för att beräkna bulkegenskaper hos gaser, vätskor, kristaller eller blandningar. [1] En vanlig applikation av PRV är för att simulera solvatiserade makromolekyler i ett bad med explicit lösningsmedel . Born–von Karmans randvillkor är periodiska randvillkor för ett speciellt system.

Inom elektromagnetik kan PRV användas för att analysera de elektromagnetiska egenskaperna hos periodiska strukturer. [2]

  1. ^ Frenkel, Daan; Smit, Berend (2002). Understanding molecular simulation : from algorithms to applications (2nd). San Diego. ISBN 978-0-08-051998-2. OCLC 173686073. https://www.worldcat.org/oclc/173686073. 
  2. ^ Mai, W.; Li, P.; Bao, H.; Li, X.; Jiang, L.; Hu, J.; Werner, D. H. (April 2019). ”Prism-Based DGTD With a Simplified Periodic Boundary Condition to Analyze FSS With D2n Symmetry in a Rectangular Array Under Normal Incidence”. IEEE Antennas and Wireless Propagation Letters 18 (4): sid. 771–775. doi:10.1109/LAWP.2019.2902340. ISSN 1536-1225. 

[[Kategori:Beräkningsfysik]] [[Kategori:Simulering]]