In Umbral calculus , the Bernoulli umbra
B
−
{\displaystyle B_{-}}
is an umbra , a formal symbol, defined by the relation
eval
B
−
n
=
B
n
−
{\displaystyle \operatorname {eval} B_{-}^{n}=B_{n}^{-}}
, where
eval
{\displaystyle \operatorname {eval} }
is the index-lowering operator,[ 1] also known as evaluation operator [ 2] and
B
n
−
{\displaystyle B_{n}^{-}}
are Bernoulli numbers , called moments of the umbra.[ 3] A similar umbra, defined as
eval
B
+
n
=
B
n
+
{\displaystyle \operatorname {eval} B_{+}^{n}=B_{n}^{+}}
, where
B
1
+
=
1
/
2
{\displaystyle B_{1}^{+}=1/2}
is also often used and sometimes called Bernoulli umbra as well. They are related by equality
B
+
=
B
−
+
1
{\displaystyle B_{+}=B_{-}+1}
. Along with the Euler umbra , Bernoulli umbra is one of the most important umbras.
In Levi-Civita field , Bernoulli umbras can be represented by elements with power series
B
−
=
ε
−
1
−
1
2
−
ε
24
+
3
ε
3
640
−
1525
ε
5
580608
+
⋯
{\displaystyle B_{-}=\varepsilon ^{-1}-{\frac {1}{2}}-{\frac {\varepsilon }{24}}+{\frac {3\varepsilon ^{3}}{640}}-{\frac {1525\varepsilon ^{5}}{580608}}+\dotsb }
and
B
+
=
ε
−
1
+
1
2
−
ε
24
+
3
ε
3
640
−
1525
ε
5
580608
+
⋯
{\displaystyle B_{+}=\varepsilon ^{-1}+{\frac {1}{2}}-{\frac {\varepsilon }{24}}+{\frac {3\varepsilon ^{3}}{640}}-{\frac {1525\varepsilon ^{5}}{580608}}+\dotsb }
, with lowering index operator corresponding to taking the coefficient of
1
=
ε
0
{\displaystyle 1=\varepsilon ^{0}}
of the power series. The numerators of the terms are given in OEIS A118050[ 4] and the denominators are in OEIS A118051.[ 5] Since the coefficients of
ε
−
1
{\displaystyle \varepsilon ^{-1}}
are non-zero, the both are infinitely large numbers,
B
−
{\displaystyle B_{-}}
being infinitely close (but not equal, a bit smaller) to
ε
−
1
−
1
/
2
{\displaystyle \varepsilon ^{-1}-1/2}
and
B
+
{\displaystyle B_{+}}
being infinitely close (a bit smaller) to
ε
−
1
+
1
/
2
{\displaystyle \varepsilon ^{-1}+1/2}
.
In Hardy fields (which are generalizations of Levi-Civita field) umbra
B
+
{\displaystyle B_{+}}
corresponds to the germ at infinity of the function
ψ
−
1
(
ln
x
)
{\displaystyle \psi ^{-1}(\ln x)}
while
B
−
{\displaystyle B_{-}}
corresponds to the germ at infinity of
ψ
−
1
(
ln
x
)
−
1
{\displaystyle \psi ^{-1}(\ln x)-1}
, where
ψ
−
1
(
x
)
{\displaystyle \psi ^{-1}(x)}
is inverse digamma function .
Plot of the function
ψ
−
1
(
ln
(
x
)
)
{\displaystyle \psi ^{-1}(\ln(x))}
, whose germ at positive infinity corresponds to
B
+
{\displaystyle B_{+}}
.
Since Bernoulli polynomials is a generalization of Bernoulli numbers, exponentiation of Bernoulli umbra can be expressed via Bernoulli polynomials :
eval
(
B
−
+
a
)
n
=
B
n
(
a
)
,
{\displaystyle \operatorname {eval} (B_{-}+a)^{n}=B_{n}(a),}
where
a
{\displaystyle a}
is a real or complex number.
This can be further generalized using Hurwitz Zeta function :
eval
(
B
−
+
a
)
p
=
−
p
ζ
(
1
−
p
,
a
)
.
{\displaystyle \operatorname {eval} (B_{-}+a)^{p}=-p\zeta (1-p,a).}
From the Riemann functional equation for Zeta function it follows that
eval
B
+
−
p
=
eval
B
+
p
+
1
2
p
π
p
+
1
sin
(
π
p
/
2
)
Γ
(
p
)
(
p
+
1
)
{\displaystyle \operatorname {eval} \,B_{+}^{-p}=\operatorname {eval} {\frac {B_{+}^{p+1}2^{p}\pi ^{p+1}}{\sin(\pi p/2)\Gamma (p)(p+1)}}}
Since
B
1
+
=
1
/
2
{\displaystyle B_{1}^{+}=1/2}
and
B
1
−
=
−
1
/
2
{\displaystyle B_{1}^{-}=-1/2}
are the only two members of the sequences
B
n
+
{\displaystyle B_{n}^{+}}
and
B
n
−
{\displaystyle B_{n}^{-}}
that differ, the following rule follows for any analytic function
f
(
x
)
{\displaystyle f(x)}
:
f
′
(
x
)
=
eval
(
f
(
B
+
+
x
)
−
f
(
B
−
+
x
)
)
=
eval
Δ
f
(
B
−
+
x
)
{\displaystyle f'(x)=\operatorname {eval} (f(B_{+}+x)-f(B_{-}+x))=\operatorname {eval} \Delta f(B_{-}+x)}
Elementary functions of Bernoulli umbra [ edit ]
As a general rule, the following formula holds for any analytic function
f
(
x
)
{\displaystyle f(x)}
:
eval
f
(
B
−
+
x
)
=
D
e
D
−
1
f
(
x
)
.
{\displaystyle \operatorname {eval} f(B_{-}+x)={\frac {D}{e^{D}-1}}f(x).}
This allows to derive expressions for elementary functions of Bernoulli umbra.
eval
cos
(
z
B
−
)
=
eval
cos
(
z
B
+
)
=
z
2
cot
(
z
2
)
{\displaystyle \operatorname {eval} \cos(zB_{-})=\operatorname {eval} \cos(zB_{+})={\frac {z}{2}}\cot \left({\frac {z}{2}}\right)}
eval
cosh
(
z
B
−
)
=
eval
cosh
(
z
B
+
)
=
z
2
coth
(
z
2
)
{\displaystyle \operatorname {eval} \cosh(zB_{-})=\operatorname {eval} \cosh(zB_{+})={\frac {z}{2}}\coth \left({\frac {z}{2}}\right)}
eval
e
z
B
−
=
z
e
z
−
1
{\displaystyle \operatorname {eval} e^{zB_{-}}={\frac {z}{e^{z}-1}}}
eval
ln
(
B
−
+
z
)
=
ψ
(
z
)
{\displaystyle \operatorname {eval} \ln(B_{-}+z)=\psi (z)}
Particularly,
eval
ln
B
+
=
−
γ
{\displaystyle \operatorname {eval} \ln B_{+}=-\gamma }
[ 6]
eval
1
π
ln
(
B
+
−
z
π
B
−
+
z
π
)
=
cot
z
{\displaystyle \operatorname {eval} {\frac {1}{\pi }}\ln \left({\frac {B_{+}-{\frac {z}{\pi }}}{B_{-}+{\frac {z}{\pi }}}}\right)=\cot z}
eval
1
π
ln
(
B
−
+
1
/
2
+
z
π
B
−
+
1
/
2
−
z
π
)
=
tan
z
{\displaystyle \operatorname {eval} {\frac {1}{\pi }}\ln \left({\frac {B_{-}+1/2+{\frac {z}{\pi }}}{B_{-}+1/2-{\frac {z}{\pi }}}}\right)=\tan z}
eval
cos
(
a
B
−
+
x
)
=
a
2
csc
(
a
2
)
cos
(
a
2
−
x
)
{\displaystyle \operatorname {eval} \cos(aB_{-}+x)={\frac {a}{2}}\csc \left({\frac {a}{2}}\right)\cos \left({\frac {a}{2}}-x\right)}
eval
sin
(
a
B
−
+
x
)
=
a
2
cot
(
a
2
)
sin
x
−
a
2
cos
x
{\displaystyle \operatorname {eval} \sin(aB_{-}+x)={\frac {a}{2}}\cot \left({\frac {a}{2}}\right)\sin x-{\frac {a}{2}}\cos x}
Particularly,
eval
sin
B
−
=
−
1
/
2
{\displaystyle \operatorname {eval} \sin B_{-}=-1/2}
,
eval
sin
B
+
=
1
/
2
{\displaystyle \operatorname {eval} \sin B_{+}=1/2}
,
Relations between exponential and logarithmic functions [ edit ]
Bernoulli umbra allows to establish relations between exponential, trigonometric and hyperbolic functions on one side and logarithms, inverse trigonometric and inverse hyperbolic functions on the other side in closed form:
eval
(
cosh
(
2
x
B
±
)
−
1
)
=
eval
x
π
artanh
(
x
π
B
±
)
=
eval
x
π
arcoth
(
π
B
±
x
)
=
x
coth
(
x
)
−
1
{\displaystyle \operatorname {eval} \left(\cosh \left(2xB_{\pm }\right)-1\right)=\operatorname {eval} {\frac {x}{\pi }}\operatorname {artanh} \left({\frac {x}{\pi B_{\pm }}}\right)=\operatorname {eval} {\frac {x}{\pi }}\operatorname {arcoth} \left({\frac {\pi B_{\pm }}{x}}\right)=x\coth(x)-1}
eval
z
2
π
ln
(
B
+
−
z
2
π
B
−
+
z
2
π
)
=
eval
cos
(
z
B
−
)
=
eval
cos
(
z
B
+
)
=
z
2
cot
(
z
2
)
{\displaystyle \operatorname {eval} {\frac {z}{2\pi }}\ln \left({\frac {B_{+}-{\frac {z}{2\pi }}}{B_{-}+{\frac {z}{2\pi }}}}\right)=\operatorname {eval} \cos(zB_{-})=\operatorname {eval} \cos(zB_{+})={\frac {z}{2}}\cot \left({\frac {z}{2}}\right)}
^ Taylor, Brian D. (1998). "Difference Equations via the Classical Umbral Calculus". Mathematical Essays in honor of Gian-Carlo Rota . pp. 397– 411. CiteSeerX 10.1.1.11.7516 . doi :10.1007/978-1-4612-4108-9_21 . ISBN 978-1-4612-8656-1 .
^ Di Nardo, E. (February 14, 2022). "A new approach to Sheppard's corrections". arXiv :1004.4989 [math.ST ].
^ "The classical umbral calculus: Sheffer sequences" (PDF) . Lecture Notes of Seminario Interdisciplinare di Matematica . 8 : 101– 130. 2009.
^ Sloane, N. J. A. (ed.), "Sequence A118050" , The On-Line Encyclopedia of Integer Sequences , OEIS Foundation
^ Sloane, N. J. A. (ed.), "Sequence A118051" , The On-Line Encyclopedia of Integer Sequences , OEIS Foundation
^ Yu, Yiping (2010). "Bernoulli Operator and Riemann's Zeta Function". arXiv :1011.3352 [math.NT ].