Integralkalkyl
Integralkalkyl är själva uträkningen av specifika integraler. För enklare integraler kan detta ofta göras direkt med hjälp av resultaten från analysens huvudsats, medan mer komplicerade fall kan kräva partiell integrering eller Fourieranalys.
Analysens huvudsats
[redigera | redigera wikitext]Sats: Om en funktion f är kontinuerlig i intervallet [a,b] och x är ett tal i intervallet [a,b] så är
en primitiv funktion till f, det vill säga funktionen S är deriverbar med S'(x) = f(x). Analysens huvudsats gör det möjligt att derivera parameterberoende integraler av formen
- .
Insättningsformeln
[redigera | redigera wikitext]Insättningsformeln följer direkt ur analysens huvudsats, och används i all integralkalkyl.
Sats: Om en funktion f är kontinuerlig i [a,b] och F är en primitiv funktion till f så är
Exempel: Arean under grafen till funktionen f(x) = x2 + 2x på intervallet [2,4] är
Med insättningsformeln kan även integraler på formen
deriveras enligt
Se även
[redigera | redigera wikitext]Externa länkar
[redigera | redigera wikitext]- Wikimedia Commons har media som rör Integralkalkyl.