Poliedar
Poliedar (genitiv množine poliedara) geometrijsko je tijelo omeđeno ravnim plohama odnosno poligonima. Te plohe se zovu strane. Dužine u kojima se sastaju dvije susjedne strane poliedra se zovu bridovi poliedra, a točke u kojima se sastaju susjedni bridovi su vrhovi poliedra. Prostorna dijagonala poliedra je dužina koja spaja dva vrha na raznim stranama poliedra.
Ako sve prostorne dijagonale poliedra leže unutar tog poliedra onda je on konveksan.
Pravilni poliedri su poliedri kome su sve strane i svi bridovi sukladni. Iz definicije proizilazi da su strane pravilni mnogokuti.
Postoji 5 vrsta pravilnih konveksnih poliedara:
- Tetraedar
- Strane su mu 4 trokuta, ima 6 bridova i 4 vrha
- Heksaedar (kocka)
- Strane su mu 6 kvadrata, ima 12 bridova i 8 vrhova
- Oktaedar
- Strane su mu 8 trokuta, ima 12 bridova i 8 vrhova
- Dodekaedar
- Strane su mu 12 peterokuta, ima 30 bridova i 20 vrhova
- Ikozaedar
- Strane su mu 20 trokuta, ima 30 bridova i 12 vrhova
- Pappus iz Aleksandrije u svom radu Sinagoga (sakupljanje, sabira) naveo trinaest tijela koja se zovu polupravilni ili Arhimedovi poliedri
- Johannes Kepler je pisao o takvim poliedrima u svojoj knjizi Harmonices mundi.
- Eulerovu formulu mozemo koristiti pri proučavanju polupravilnih poliedara.
- Polupravilni poliedri imaju za strane pravilne mnogouglove ali dvije različite vrste.
- Npr. nogometna lopta sastoji se od pravilnih petouglova i šesteuglova
- U svakom vrhu sastaju se jedan petougao i dva šestougla.
- Odredit ćemo broj vrhova nogometne lopte. Označimo ukupan broj petougaonih strana sa m, a ukupan broj šestougaonih sa n.
- Iz Eulerove formule slijedi
- Kako svaki vrh pripada tačno jednom petouglu, ukupan broj vrhova je
- U svakom vrhu sastaju dva šestougla, broj vrhova jednak je i
- Dakle nogometna lopta ima 12 petougaonih i 20 šestougaonih strana, 60 vrhova i 90 ivica.
Zapremina
- .
- Površina
- Podjela Arhimedovih tijela
- I grupa
Pet poliedara ove grupacije nastaje odsijecanjem vrhova Platonovih tijela te čini grupu krnjih poliedara
Krnji tetraedar | (3,6,6) |
Krnji heksaedar | (3,8,8) |
Krnji oktaedar | (4,6,6) |
Krnji dodekaeda | (3,10,10) |
Krnji ikosaedar | (5,6,6) |
- II grupa
Grupa od četiri polupravilna poliedra jednostavno se može povezati s kockom i oktaedrom. Naziva se grupa kubokta poliedara.
Kuboktaedar | (3,4,3,4) |
Rombokuboktaedar | ((3,4,4,4 |
Veliki rombokuboktaedar | (4,6,8) |
Skošena kocka | ((3,3,3,3,4) |
- III grupa
Ova grupa od četiri polupravilna poliedra može se povezati s dodekaedrom i ikosaedrom. Naziva se grupa ikosadodeka poliedara
Ikosadodekaedar | (3,5,3,5) |
Rombikosadodekaedar | ((3,4,5,4 |
Veliki rombikosadodekaedar | (4,6,10) |
Skošeni dodekaedar | ((3,3,3,3,5) |
U novije vrijeme raspravlja se o još jednom polupravilnom konveksnom poliedru koji nastaje zakretanjem jedne kalote (kape ) rombokuboktaedra. Poznat je pod nazivom pseudo–rombokuboktaedar.
Zanimljivu osobinu imaju skošena kocka (Cubus Simus) i skošeni dodekaedar (Dodecaedron simum) To su jedina Arhimedova tijela koja ne posjeduju ravan simetrije i nemaju središte simetrije. Svako od ovih dvaju tijela javlja se u dvije forme koje se razlikuju po svojim orijentacijama. Za figure s ovim sosobinama kažemo dasu enantiomorfne figure, odnosno figure čija slika u ogledalu nije identična originalnoj slici