In category theory and general topology , a topological functor is one which has similar properties to the forgetful functor from the category of topological spaces . The domain of a topological functor admits construction similar to initial topology (and equivalently the final topology ) of a family of functions. The notion of topological functors generalizes (and strengthens) that of fibered categories , for which one considers a single morphism instead of a family.[ 1] : 407, §1
A source
(
X
,
(
Y
i
)
i
∈
I
,
(
f
i
:
X
→
Y
i
)
i
∈
I
)
{\displaystyle (X,(Y_{i})_{i\in I},(f_{i}\colon X\to Y_{i})_{i\in I})}
in a category
E
{\displaystyle {\mathcal {E}}}
consists of the following data:[ 2] : 125, Definition 1.1(1)
an object
X
∈
E
{\displaystyle X\in {\mathcal {E}}}
,
a (possibly proper) class of objects
(
Y
i
)
i
∈
I
⊆
E
{\displaystyle (Y_{i})_{i\in I}\subseteq {\mathcal {E}}}
and a class of morphisms
(
f
i
:
X
→
Y
i
)
i
∈
I
{\displaystyle (f_{i}\colon X\to Y_{i})_{i\in I}}
.
Dually, a sink
(
X
,
(
Y
i
)
i
∈
I
,
(
f
i
:
Y
i
→
X
)
i
∈
I
)
{\displaystyle (X,(Y_{i})_{i\in I},(f_{i}\colon Y_{i}\to X)_{i\in I})}
in
E
{\displaystyle {\mathcal {E}}}
consists of
an object
X
∈
E
{\displaystyle X\in {\mathcal {E}}}
,
a class of objects
(
Y
i
)
i
∈
I
⊆
E
{\displaystyle (Y_{i})_{i\in I}\subseteq {\mathcal {E}}}
and a class of morphisms
(
f
i
:
Y
i
→
X
)
i
∈
I
{\displaystyle (f_{i}\colon Y_{i}\to X)_{i\in I}}
.
In particular, a source
(
f
i
:
X
→
Y
i
)
i
∈
I
{\displaystyle (f_{i}\colon X\to Y_{i})_{i\in I}}
is an object
X
{\displaystyle X}
if
I
{\displaystyle I}
is empty, a morphism
X
→
Y
{\displaystyle X\to Y}
if
I
{\displaystyle I}
is a set of a single element. Similarly for a sink.
Initial source and final sink [ edit ]
Let
(
f
i
:
X
→
Y
i
)
i
∈
I
{\displaystyle (f_{i}\colon X\to Y_{i})_{i\in I}}
be a source in a category
E
{\displaystyle {\mathcal {E}}}
and let
Π
:
E
→
B
{\displaystyle \Pi \colon {\mathcal {E}}\to {\mathcal {B}}}
be a functor. The source
(
f
i
)
i
∈
I
{\displaystyle (f_{i})_{i\in I}}
is said to be a
Π
{\displaystyle \Pi }
-initial source if it satisfies the following universal property .[ 2] : Definition 2.1(1)
For every object
X
′
∈
E
{\displaystyle X'\in {\mathcal {E}}}
, a morphism
g
^
:
Π
(
X
′
)
→
Π
(
X
)
{\displaystyle {\hat {g}}\colon \Pi (X')\to \Pi (X)}
and a family of morphisms
(
f
i
′
:
X
′
→
Y
i
)
i
∈
I
{\displaystyle (f'_{i}\colon X'\to Y_{i})_{i\in I}}
such that
Π
(
f
i
)
∘
g
^
=
Π
(
f
i
′
)
{\displaystyle \Pi (f_{i})\circ {\hat {g}}=\Pi (f'_{i})}
for each
i
∈
I
{\displaystyle i\in I}
, there exists a unique
E
{\displaystyle {\mathcal {E}}}
-morphism
g
:
X
′
→
X
{\displaystyle g\colon X'\to X}
such that
g
^
=
Π
(
g
)
{\displaystyle {\hat {g}}=\Pi (g)}
and
∀
i
∈
I
:
f
i
∘
g
=
f
i
′
{\displaystyle \forall i\in I\colon f_{i}\circ g=f'_{i}}
.
E
→
Π
B
X
′
∃
!
g
↓
∃
!
g
↘
f
i
′
X
→
f
i
Y
i
↦
Π
Π
X
′
g
^
↓
g
^
↘
Π
f
i
′
Π
X
→
Π
f
i
Π
Y
i
{\displaystyle {\begin{matrix}{\mathcal {E}}&\qquad {\overset {\Pi }{\to }}\qquad &{\mathcal {B}}\\\hline {\begin{matrix}X'\\{\scriptstyle \exists !g}\downarrow {\color {White}\scriptstyle \exists !g}&\searrow \!\!^{f'_{i}}\!\!\!\!\!\!\\X&{\underset {f_{i}}{\to }}&Y_{i}\end{matrix}}&\qquad {\overset {\Pi }{\mapsto }}\qquad &{\begin{matrix}\Pi X'\\{\scriptstyle {\hat {g}}}\downarrow {\color {White}\scriptstyle {\hat {g}}}&\searrow \!\!^{\Pi f'_{i}}\!\!\!\!\!\!\\\Pi X&{\underset {\Pi f_{i}}{\to }}&\Pi Y_{i}\end{matrix}}\end{matrix}}}
Similarly one defines the dual notion of
Π
{\displaystyle \Pi }
-final sink .
When
I
{\displaystyle I}
is a set of a single element, the initial source is called a Cartesian morphism .
Let
E
{\displaystyle {\mathcal {E}}}
,
B
{\displaystyle {\mathcal {B}}}
be two categories. Let
Π
:
E
→
B
{\displaystyle \Pi \colon {\mathcal {E}}\to {\mathcal {B}}}
be a functor. A source
(
f
^
i
:
X
^
→
Y
^
i
)
i
∈
I
{\displaystyle ({\hat {f}}_{i}\colon {\hat {X}}\to {\hat {Y}}_{i})_{i\in I}}
in
B
{\displaystyle {\mathcal {B}}}
is a
Π
{\displaystyle \Pi }
-structured source if for each
i
{\displaystyle i}
we have
Y
^
i
=
Π
(
Y
i
)
{\displaystyle {\hat {Y}}_{i}=\Pi (Y_{i})}
for some
Y
i
∈
E
{\displaystyle Y_{i}\in {\mathcal {E}}}
.[ 2] : 128, Definition 1.1(2) One similarly defines a
Π
{\displaystyle \Pi }
-structured sink .
A lift of a
Π
{\displaystyle \Pi }
-structured source
(
f
^
i
:
X
^
→
Π
(
Y
i
)
)
i
∈
I
{\displaystyle ({\hat {f}}_{i}\colon {\hat {X}}\to \Pi (Y_{i}))_{i\in I}}
is a source
(
f
i
:
X
^
→
Y
i
)
i
∈
I
{\displaystyle (f_{i}\colon {\hat {X}}\to Y_{i})_{i\in I}}
in
E
{\displaystyle {\mathcal {E}}}
such that
Π
(
X
)
=
X
^
{\displaystyle \Pi (X)={\hat {X}}}
and
Π
(
f
i
)
=
f
^
i
{\displaystyle \Pi (f_{i})={\hat {f}}_{i}}
for each
i
∈
I
{\displaystyle i\in I}
E
→
Π
B
∃
X
∃
f
i
↓
∃
f
i
Y
i
↦
Π
X
^
f
^
i
↓
f
^
i
Π
Y
i
{\displaystyle {\begin{matrix}{\mathcal {E}}&\qquad {\overset {\Pi }{\to }}\qquad &{\mathcal {B}}\\\hline {\begin{matrix}\exists X\\{\scriptstyle \exists f_{i}}\downarrow {\color {White}\scriptstyle \exists f_{i}}\\Y_{i}\end{matrix}}&\qquad {\overset {\Pi }{\mapsto }}\qquad &{\begin{matrix}{\hat {X}}\\{\scriptstyle {\hat {f}}_{i}}\downarrow {\color {White}\scriptstyle {\hat {f}}_{i}}\\\Pi Y_{i}\end{matrix}}\end{matrix}}}
A lift of a
Π
{\displaystyle \Pi }
-structured sink is similarly defined. Since initial and final lifts are defined via universal properties , they are unique up to a unique isomorphism , if they exist.
If a
Π
{\displaystyle \Pi }
-structured source
(
X
^
→
Π
(
Y
i
)
)
i
∈
I
{\displaystyle ({\hat {X}}\to \Pi (Y_{i}))_{i\in I}}
has an initial lift
(
X
→
Y
i
)
i
∈
I
{\displaystyle (X\to Y_{i})_{i\in I}}
, we say that
X
{\displaystyle X}
is an initial
E
{\displaystyle {\mathcal {E}}}
-structure on
X
^
{\displaystyle {\hat {X}}}
with respect to
(
X
^
→
Π
(
Y
i
)
)
i
∈
I
{\displaystyle ({\hat {X}}\to \Pi (Y_{i}))_{i\in I}}
. Similarly for a final
E
{\displaystyle {\mathcal {E}}}
-structure with respect to a
Π
{\displaystyle \Pi }
-structured sink.
Topological functor [ edit ]
Let
Π
:
E
→
B
{\displaystyle \Pi \colon {\mathcal {E}}\to {\mathcal {B}}}
be a functor. Then the following two conditions are equivalent.[ 2] : 128, Definition 2.1(3) [ 3] : 29–30, §2 [ 4] : 2, Example 2.1(25) : 4, Definition 2.12
Every
Π
{\displaystyle \Pi }
-structured source has an initial lift. That is, an initial structure always exists.
Every
Π
{\displaystyle \Pi }
-structured sink has a final lift. That is, a final structure always exists.
A functor satisfying this condition is called a topological functor .
One can define topological functors in a different way, using the theory of enriched categories .[ 1]
A concrete category
(
E
,
F
)
{\displaystyle ({\mathcal {E}},F)}
is called a topological (concrete) category if the forgetful functor
F
:
E
→
Set
{\displaystyle F\colon {\mathcal {E}}\to \operatorname {Set} }
is topological. (A topological category can also mean an enriched category enriced over the category
Top
{\displaystyle \operatorname {Top} }
of topological spaces .) Some require a topological category to satisfy two additional conditions.
Constant functions in
S
e
t
{\displaystyle \mathbf {Set} }
lift to
E
{\displaystyle {\mathcal {E}}}
-morphisms .
Fibers
Π
−
1
(
X
^
)
{\displaystyle \Pi ^{-1}({\hat {X}})}
(
X
^
∈
S
e
t
{\displaystyle {\hat {X}}\in \mathbf {Set} }
) are small (they are sets and not proper classes ).
Every topological functor is faithful .[ 2] : 129, Theorem 3.1
Let
P
{\displaystyle {\mathsf {P}}}
be one of the following four properties of categories:
If
Π
:
E
→
B
{\displaystyle \Pi \colon {\mathcal {E}}\to {\mathcal {B}}}
is topological and
B
{\displaystyle {\mathcal {B}}}
has property
P
{\displaystyle {\mathsf {P}}}
, then
E
{\displaystyle {\mathcal {E}}}
also has property
P
{\displaystyle {\mathsf {P}}}
.
Let
E
{\displaystyle {\mathcal {E}}}
be a category. Then the topological functors
E
→
Set
{\displaystyle {\mathcal {E}}\to \operatorname {Set} }
are unique up to natural isomorphism .[ 5] : 6, Corollary 2.2
An example of a topological category is the category of all topological spaces with continuous maps, where one uses the standard forgetful functor.[ 6]
^ a b Garner, Richard (2014-08-12). "Topological functors as total categories" . Theory and Applications of Categories . 29 (15): 406– 421. arXiv :1310.0903 . Bibcode :2013arXiv1310.0903G . ISSN 1201-561X . Zbl 1305.18005 .
^ a b c d e Herrlich, Horst (June 1974). "Topological functors". General Topology and Its Applications . 4 (2): 125– 142. doi :10.1016/0016-660X(74)90016-6 .
^ Brümmer, G. C. L. (September 1984). "Topological categories". Topology and Its Applications . 18 (1): 27– 41. doi :10.1016/0166-8641(84)90029-4 . ISSN 0166-8641 .
^ Lowen, Robert; Sioen, Mark; Verwulgen, Stijn (2009). "Categorical topology". In Mynard, Frédéric; Pearl, Elliott (eds.). Beyond topology . Contemporary Mathematics. Vol. 486. American Mathematical Society. doi :10.1090/conm/486/9506 (inactive 2024-11-16). ISBN 978-0-8218-4279-9 . MR 2521941 . {{cite book }}
: CS1 maint: DOI inactive as of November 2024 (link )
^ Hoffmann, Rudolf-E. (1975). "Topological functors and factorizations". Archives of Mathematics . 26 : 1– 7. doi :10.1007/BF01229694 . ISSN 0003-889X . MR 0428255 . Zbl 0309.18002 .
^ Brümmer, G. C. L. (September 1984). "Topological categories" . Topology and Its Applications . 18 (1): 27– 41. doi :10.1016/0166-8641(84)90029-4 .