This is
the user sandbox of Zyang666 . A user sandbox is a subpage of the user's
user page . It serves as a testing spot and page development space for the user and is
not an encyclopedia article .
Create or edit your own sandbox here . Other sandboxes: Main sandbox | Template sandbox
Finished writing a draft article? Are you ready to request review of it by an experienced editor for possible inclusion in Wikipedia? Submit your draft for review!
===Math===
g
i
(
x
)
≤
0
,
x
y
,
l
(
x
)
=
min
{
j
∣
f
j
(
x
)
≤
x
j
>
0
}
.
{\displaystyle g_{i}(x)\leq 0,{\frac {x}{y}},l(x)=\min\{j\mid f_{j}(x)\leq x_{j}>0\}.}
An illustration of Scarf's method
Figure 1: The Illustration of Scarf's Algorithm
∫
a
b
f
(
x
)
d
x
=
X
.
{\displaystyle \int _{a}^{b}f(x)dx=X.}
max
(
a
01
x
1
+
a
02
x
2
+
⋯
+
a
0
n
x
n
)
s
.
t
.
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
a
21
x
1
+
a
22
x
2
+
⋯
+
a
1
n
x
n
⋮
⋮
⋮
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
{\displaystyle {\begin{aligned}&&\max(a_{01}x_{1}+a_{02}x_{2}+\cdots +a_{0n}x_{n})\\&&{\operatorname {s.t.} }\quad a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}\\&&\quad a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{1n}x_{n}\\&&\quad \vdots \quad \vdots \quad \vdots \quad \\&&\quad a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}\end{aligned}}}
where
x
1
,
x
2
,
⋯
,
x
n
{\displaystyle x_{1},x_{2},\cdots ,x_{n}}
are integers.
A
=
[
1
0
⋯
0
a
(
1
,
n
+
1
)
⋯
a
(
1
,
m
)
0
1
⋯
0
a
(
2
,
n
+
2
)
⋯
a
(
2
,
m
)
⋯
⋯
0
0
⋯
1
a
(
n
,
n
+
1
)
⋯
a
(
n
,
m
)
]
{\displaystyle \mathbf {A} ={\begin{bmatrix}1&0&\cdots &0&a(1,n+1)&\cdots &a(1,m)\\0&1&\cdots &0&a(2,n+2)&\cdots &a(2,m)\\&&\cdots &&&\cdots &\\0&0&\cdots &1&a(n,n+1)&\cdots &a(n,m)\end{bmatrix}}}
and
C
=
[
c
(
1
,
1
)
⋯
c
(
1
,
n
)
c
(
1
,
n
+
1
)
⋯
c
(
1
,
m
)
c
(
2
,
1
)
⋯
c
(
2
,
n
)
c
(
2
,
n
+
2
)
⋯
c
(
2
,
m
)
⋯
⋯
c
(
n
,
1
)
⋯
c
(
n
,
m
)
c
(
n
,
n
+
1
)
⋯
c
(
n
,
m
)
]
{\displaystyle \mathbf {C} ={\begin{bmatrix}c(1,1)&\cdots &c(1,n)&c(1,n+1)&\cdots &c(1,m)\\c(2,1)&\cdots &c(2,n)&c(2,n+2)&\cdots &c(2,m)\\&\cdots &&&\cdots &\\c(n,1)&\cdots &c(n,m)&c(n,n+1)&\cdots &c(n,m)\end{bmatrix}}}
f
:
S
n
→
S
n
{\displaystyle f:S^{n}\to S^{n}}
S
n
=
{
x
∈
R
+
n
∣
∑
i
=
1
n
x
i
=
1
}
{\displaystyle S^{n}=\{x\in \mathbb {R} _{+}^{n}\mid \sum _{i=1}^{n}x_{i}=1\}}
Bold BOLD
Italic italic